International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 721–724

On the Diophantine Equation
$$F_n^x + F_{n+1}^x = y^2$$

Richard J. Taclay

Department of Mathematics and Statistics College of Arts and Sciences Nueva Vizcaya State University Bayombong, Nueva Vizcaya, Philippines

email: rjtaclay@nvsu.edu.ph

(Received December 9, 2023, Accepted January 12, 2024, Published February 12, 2024)

Abstract

We find all nonnegative integer solutions (n, x, y) to the Diophantine equation $F_n^x + F_{n+1}^x = y^2$, where F_n is the *n*-th Fibonacci number.

1 Introduction

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence given by $F_{n+2} = F_{n+1} + F_n$, where $F_0 = 0, F_1 = 1$ and $n \geq 0$. Numerous researchers have been investigating powers within the Fibonacci sequence, as documented in [1], [2], [3], [4], and [5]. A Diophantine equation is an equation in which only an integer solution is allowed. The Diophantine equation of the form

$$a^x + b^y = z^2,$$

where a and b are integers, has undergone extensive investigation by several researchers. However, the exploration of cases where a and b are the n-th Fibonacci numbers was pursued by Sroysang ([6], [7], [8]) and Acu [9]. In multiple papers, Sroysang demonstrated that the following Diophantine equation possesses solutions in nonnegative integers (x, y, z):

Key words and phrases: Diophantine equation, Fibonacci number AMS (MOS) Subject Classifications: 11D61. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

- $2^x + 3^y = z^2$, with solutions of (0, 1, 2), (3, 0, 3), and (4, 2, 5).
- $3^x + 5^y = z^2$, with solution of (1, 0, 2).
- $8^x + 13^y = z^2$, with solution of (1, 0, 3).

Additionally, Acu's study revealed that $2^x + 5^y = z^2$ has exactly two solutions in nonnegative integers $(x, y, z) \in \{(3, 0, 3), (2, 1, 3)\}$. Motivated by the aforementioned studies, we explore the nonnegative solutions (n, x, y) for equation $F_n^x + F_{n+1}^x = y^2$ further.

2 Preliminaries

Before presenting the main results, we review some properties of Fibonacci numbers along with some known results.

Here are some properties or identities we will use in this paper.

- 1. $gcd(F_n, F_{n+1}) = 1$, for all n > 0
- 2. $F_n^2 + F_{n+1}^2 = F_{2n+1}$, for all $n \ge 0$

The following theorem is a result of Cohn [1].

Theorem 2.1. The only Fibonacci numbers F_n that are perfect squares are 0, 1, 144: that is, when n = 0, 1, 2, 12.

The next theorem can be found in [2].

Theorem 2.2. Let p be an odd prime, a, b, c, k integers with gcd(a, b) = 1and $k \ge 2$. If $a^p + b^p = c^k$, then $a + b = d^k$ or $p^{k-1}d^k$, for some integer d.

The following result can be found in [3].

Theorem 2.3. The only positive integer solutions (n, k, p, y) to the equation $F_n = 3^k y^p$ with k > 0 and $p \ge 2$ are $F_4 = 3 \cdot 1$ and $F_{12} = 3^2 \cdot 4^2$.

Finally, the next theorem can be obtained from [10].

Theorem 2.4. The equation $x^n + y^n = z^2$ has no nontrivial primitive solutions for $n \ge 4$.

On the Diophantine Equation $F_n^x + F_{n+1}^x = y^2$

3 Main results

Theorem 3.1. All the solutions of the Diophantine equation $F_n^x + F_{n+1}^x = y^2$ with n = 0 in nonnegative integers (n, x, y) are of the form (0, x, 1), where $x \in \mathbb{N}$.

Proof. Let n = 0. We have $0^x + 1^x = y^2$. The value of x cannot be zero and so we get the desired form.

Theorem 3.2. All the nonnegative solutions of the Diophantine equation $F_n^x + F_{n+1}^x = y^2$ are $(n, x, y) \in \{(10, 1, 12), (2, 3, 3)\}$ for all n > 0.

Proof. Let $n \neq 0$. We consider five cases:

Case 1. x = 0. Since $n \neq 0$, we get $1 + 1 = 2 = y^2$ which does not have integer solutions.

Case 2. x = 1. This implies that $F_n + F_{n+1} = y^2$ or $F_{n+2} = y^2$. By Theorem (2.1), either n = 0 or n = 10. Thus, (n, x, y) = (10, 1, 12).

Case 3. x = 2. We have $F_n^2 + F_{n+1}^2 = y^2$. Using property 2, we get $F_{2n+1} = y^2$. By Theorem (2.1), we have n = 0. This is impossible since $n \neq 0$.

Case 4. x = 3. We have $F_n^3 + F_{n+1}^3 = y^2$. By Theorem (2.2), we get either $F_n + F_{n+1} = d^2$ or $F_n + F_{n+1} = 3d^2$. We note that $F_n + F_{n+1} = d^2$ has the same result as Case 2. Meanwhile, using Theorem (2.3), the equation $F_n + F_{n+1} = F_{n+2} = 3d^2$ yields n = 2. Thus we have (n, x, y) = (2, 3, 3).

Case 5. $x \ge 4$. Using Theorem (2.4), we are guaranteed that the equation $F_n^x + F_{n+1}^x = y^2$ has no solutions.

4 Conclusion

In this paper, we have shown that the only nonnegative integer solutions to the Diophantine equation $F_n^x + F_{n+1}^x = y^2$ are

$$(n, x, y) \in \{(0, x, 1), (10, 1, 12), (2, 3, 3)\},\$$

where $x \in \mathbb{N}$.

5 Open Problem

For further exploration, one may investigate the nonnegative integer solutions of the Diophantine equation $F_n^x + F_{n+1}^y = z^2$ for $x \neq y$.

References

- J. H. Cohn, On square Fibonacci numbers, Proc. Lond. Maths. Soc., 39, no. 1, (1964), 537–540.
- [2] Z. Zhang, A. Togbe, Perfect powers that are sums of two powers of Fibonacci numbers, Bull. Aust. Math. Soc., 99, no. 1, (2019), 34–41.
- [3] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math., 63, no. 2, (2008), 65–75.
- [4] N. H. Kohno, F. Luca, On the Diophantine equation $F_n^x + F_{n+1}^x = F_m^y$, Rocky Mountain Journal of Mathematics, **45**, no. 2, (2015), 509–538.
- [5] D. Marques, A. Togbe, On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A, 86, no. 10, (2010), 174– 176.
- [6] B. Sroysang, More on the Diophantine equation $2^x + 3^y = z^2$, International Journal of Pure and Applied Mathematics, **84**, no. 2, (2013), 133–137.
- [7] B. Sroysang, On the Diophantine equation $3^x + 5^y = z^2$, International Journal of Pure and Applied Mathematics, **81**, no. 4, (2012), 605–608.
- [8] B. Sroysang, On the Diophantine equation $8^x + 13^y = z^2$, International Journal of Pure and Applied Mathematics, **90**, no. 1, (2014), 69–72.
- [9] D. Acu, On the Diophantine equation $2^x + 5^y = z^2$, General Mathematics, **15**, no. 4, (2007), 145–148.
- [10] B. Poonen, Some Diophantine equations of the form $x^n + y^n = z^2$, Acta Arithmetica, **86**, no. 3, (1964), 193–205.

724