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Abstract

The purpose of the present paper is to introduce the structure

space of uniformly strongly prime ideals of an ordered semigroup and

to study the separation axioms and the compactness property.

1 Introduction

By means of a closure operator, a topological space of the set of some types
of ideals of an algebraic structure has been widely studied. A topological
space of the set of primitive ideals of a ring was introduced and studied by
Jacobson [7]. McCoy [9] observed that the set of generalized prime ideals of
a ring can be treated in the same way. Kohls [8] introduced and investigated
the space of prime ideals of a ring. Gillman [5] studied Hausdorff structure
spaces of a ring. A topological space of several kinds of ideals of a semiring
has been studied by Adhikari and Das [1]. A topological space of prime k-
ideals of a Γ-semiring has also been studied by Goswami and Mukhopadhyay
[6]. Chattopadhyay and Kar [2] considered the topological space of uniformly
strongly prime ideals and of proper maximal ideals of a Γ-semigroup. The
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purpose of the present paper is to introduce the structure space of uniformly
strongly prime ideals of an ordered semigroup and to study the separation
axioms and the compactness property.

An ordered semigroup (S, .,≤) consists of a semigroup (S, .) together with
an ordered relation ≤ on S that is compatible with the semigroup operation;
i.e., for any a, b, c in S, a ≤ b implies ca ≤ cb and ac ≤ bc [4]. For A,B ⊆ S,
we write AB for {ab ∈ S | a ∈ A, b ∈ B} and write (A] for {x ∈ S | ∃a ∈
A, x ≤ a}. It is observed that A ⊆ (A]; A ⊆ B ⇒ (A] ⊆ (B]; ((A]] = (A];
(A](B] ⊆ (AB]; ((A](B]] = (AB]; (A ∪B] = (A] ∪ (B]; (A ∩B] ⊆ (A] ∩ (B].
A non-empty subset A of S is called a right ideal (of S) if

(1) ax ∈ A for any a ∈ A and x ∈ S (i.e., AS ⊆ A);

(2) (A] = A (equivalently, if a ∈ A, x ∈ S and x ≤ a, then x ∈ A).

A left ideal of S can be defined similarly: a non-empty subset A of S is called
a left ideal (of S) if

(1) xa ∈ A for any a ∈ A and x ∈ S (i.e., SA ⊆ A);

(2) (A] = A (equivalently, if a ∈ A, x ∈ S and x ≤ a, then x ∈ A).

A non-empty subset A of S is called a two-sided ideal (abbreviated by ideal)
of S if it is both a left and a right ideal of S. If A and B are ideals of S,
then (AB] is an ideal of S. The principal ideal of S generated by an element
a of S, denoted by I(a), is of the form I(a) = (a ∪ aS ∪ Sa ∪ SaS] (i.e.,
I(a) = (S1aS1]). An element 0 of S is called a zero if 0a = a0 = 0 for all
a ∈ S. An element 1 of S is called an identity if a1 = 1a = a for all a ∈ S.

Definition 1.1. Let P be an ideal of an ordered semigroup (S, .,≤). Then P
is called a prime ideal of S if for any ideals A and B of S, AB ⊆ P implies
A ⊆ P or B ⊆ P .

Theorem 1.2. Let P be an ideal of an ordered semigroup (S, .,≤). Then P
is a prime ideal of S if and only if for any a, b ∈ S, aSb ⊆ P implies a ∈ P
or b ∈ P .

Proof. Assume that P is a prime ideal of S and let a, b ∈ S such that
aSb ⊆ P . We have

((S1aS1](S1aS1]]((S1bS1](S1bS1]] ⊆ ((S1aS1)(S1aS1)]((S1bS1)(S1bS1)]

⊆ ((S1aS1)(S1aS1)(S1bS1)(S1bS1)]

⊆ (S1aS1aS1bS1bS1]

⊆ P.
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By assumption, we have ((S1aS1](S1aS1]] ⊆ P or ((S1bS1](S1bS1]] ⊆ P .
Then (S1aS1] ⊆ P or (S1bS1] ⊆ P and so a ∈ P or b ∈ P . Conversely,
assume that for any a, b ∈ S, if aSb ⊆ P , then a ∈ P or b ∈ P . Let A and
B be ideals of S such that AB ⊆ P . To show that A ⊆ P or B ⊆ P , we
suppose A * P . Then there exists a ∈ A \ P . Let b ∈ B. We have

aSb ⊆ (aSb] ⊆ (ASB] ⊆ (AB] ⊆ (P ] = P.

By assumption, we have a ∈ P or b ∈ P . From a /∈ P , we obtain b ∈ P .
Thus B ⊆ P . Hence P is a prime ideal of S.

Definition 1.3. Let P be an ideal of an ordered semigroup (S, .,≤). Then
P is said to be uniformly strongly prime ideal if S contains a finite subset F
such that for any x, y ∈ S, xFy ⊆ P implies x ∈ P or y ∈ P .

Theorem 1.4. Let P be an ideal of an ordered semigroup (S, .,≤). If P is
a uniformly strongly prime ideal of S, then P is a prime ideal of S.

Proof. Suppose P is a uniformly strongly prime ideal of S. Then there exists
a finite subset F of S such that for any x, y ∈ S, xFy ⊆ P implies x ∈ P or
y ∈ P . Let a, b ∈ S be such that aSb ⊆ P . Then aFb ⊆ aSb ⊆ P . So a ∈ P
or b ∈ P . Therefore, P is a prime ideal of S.

2 The space of prime ideals

Let A denote the set of all uniformly strongly prime ideals of an ordered
semigroup (S, .,≤) with zero. For A ⊆ A, define

Ā = {I ∈ A | ∩J∈AJ ⊆ I} .

Observe that ∅̄ = ∅.

Theorem 2.1. Let A,B be non-empty subsets of A. Then the following
hold:

(1) A ⊆ Ā;

(2) ¯̄A = Ā;

(3) A ⊆ B ⇒ Ā ⊆ B̄;

(4) A ∪ B = Ā ∪ B̄.
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Proof. (1): If J0 ∈ A, then ∩J∈AJ ⊆ J0y. Therefore, A ⊆ Ā.
(2): By (1), Ā ⊆ ¯̄A. Let I ∈ ¯̄A. Then ∩J∈ĀJ ⊆ I. From ∩K∈AK ⊆ J for

all J ∈ Ā, it follows that ∩K∈AK ⊆ ∩J∈ĀJ ⊆ I. So I ∈ Ā. Hence ¯̄A ⊆ Ā.
Consequently, ¯̄A = Ā.

(3): Assume that A ⊆ B. Let I ∈ Ā. Then ∩J∈AJ ⊆ I. By assumption,
∩K∈BK ⊆ ∩J∈AJ ⊆ I. So I ∈ B̄. As a result, Ā ⊆ B̄.

(4): Since A ⊆ A ∪ B, Ā ⊆ A ∪ B. Similarly, since B ⊆ A ∪ B, we have
B̄ ⊆ A ∪ B. Then Ā∪ B̄ ⊆ A ∪ B. Now, let I ∈ A ∪ B. Then ∩J∈A∪BJ ⊆ I.
We have

∩J∈A∪BJ = ∩K∈AK ∩ ∩L∈BL.

Since ∩K∈AK and ∩L∈BL are ideals of S, it follows that

∩K∈AK ∩L∈B L ⊆ ∩K∈AK ∩ ∩L∈BL = ∩J∈A∪BJ ⊆ I.

Since I is prime (Theorem 1.4), ∩K∈AK ⊆ I or ∩L∈BL ⊆ I. So I ∈ Ā or
I ∈ B̄. Hence A ∪ B ⊆ Ā ∪ B̄, and A ∪ B = Ā ∪ B̄.

From Theorem 2.1, we have the closure operator A → Ā that gives a
topology τA on A, called the hull-kernel topology. A pair (A; τA) is called the
structure space of the ordered semigroup (S, .,≤). For an ideal I of S, define

∆(I) = {J ∈ A | I ⊆ J}, C∆(I) = {J ∈ A | I * J}.

Theorem 2.2. Any closed set in A is of the form ∆(I) for some ideal I.

Proof. Let Ā be a closed set of the structure space (A; τA) such that A =
{Iα | α ∈ Λ}. We set I = ∩α∈ΛIα. Then I is an ideal of S. If J ∈ Ā, then
I ⊆ J ands thus J ∈ ∆(I). If J ∈ ∆(I), then I ⊆ J. So J ∈ Ā. Hence
Ā = ∆(I).

Corollary 2.3. Any open set in A is of the form C∆(I) for some ideal I.

For a ∈ S, let

∆(a) = {J ∈ A | a ∈ J}, C∆(a) = {J ∈ A | a /∈ J}.

Theorem 2.4. The set {C∆(a) | a ∈ S} is an open base of τA.

Proof. Let U ∈ τA be an open set. Then U = C∆(I) for some ideal I of S.
Let J ∈ U . Then I * J and so there exists a ∈ S such that a ∈ I \ J . Thus
J ∈ C∆(a). Let K ∈ C∆(a). Thus a /∈ K. Since I * K, K ∈ U . Hence the
set {C∆(a) | a ∈ S} is an open base of τA.
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Theorem 2.5. The structure space (A; τA) is the T0-space.

Proof. Let I, J ∈ A be two distinct elements. Then I * J or J * I. If I * J ,
then J ∈ C∆(I). Hence C∆(I) is a neighbourhood of J not containing I.
Therefore, the structure space (A; τA) is the T0-space.

Theorem 2.6. The structure space (A; τA) is the T1-space if and only if no
element of A is contained in any other element of A.

Proof. Suppose that the structure space (A; τA) is the T1-space. Let I ′ and
J ′ be distinct elements of A. Then I ′ ∈ C∆(I) and J ′ ∈ C∆(J) for some
I, J ∈ A such that J ′ /∈ C∆(I) and I ′ /∈ C∆(J). If I ′ ⊆ J ′, then J ⊆ I ′ ⊆ J ′.
This is a contradiction. Similarly, if J ′ ⊆ I ′, then I ⊆ J ′ ⊆ I ′. This is a
contradiction. Hence no element of A is contained in any other element of A.
Conversely, assume that no element of A is contained in any other element
of A. Let I ′ and J ′ be distinct elements of A. Then I ′ * J ′ and J ′ * I ′.
Then I ′ ∈ C∆(J ′) and J ′ ∈ C∆(I ′). We have that each of I ′ and J ′ has a
neighborhood not containing the other. Hence the structure space (A; τA) is
the T1-space.

Corollary 2.7. If M is the set of all proper maximal ideals of an ordered
semigroup S with identity, then (M; τM) is a T1-space, where TM is the
induced topology on M from (A; τA).

Theorem 2.8. The structure space (A; τA) is the Hausdorff space if and
only if for any distinct I, J ∈ A there exist a, b ∈ S such that a /∈ I and
b /∈ J and there does not exist K ∈ A such that a /∈ K and b /∈ K.

Proof. Suppose that the structure space (A; τA) is the Hausdorff space. Let
I ′ and J ′ be distinct elements of A. Then I ′ ∈ C∆(I) and J ′ ∈ C∆(J)
for some I, J ∈ A and C∆(I) ∩ C∆(J) = ∅. From I ′ ∈ C∆(I), we have
I * I ′. Then there exists a ∈ S such that a ∈ I and a /∈ I ′. Similarly, from
J ′ ∈ C∆(J), there exists b ∈ S such that b ∈ J and b /∈ J ′. Assume that
there exists K ∈ A such that a /∈ K and b /∈ K. Then K ∈ C∆(I) and
K ∈ C∆(J), so C∆(I) ∩ C∆(J) 6= ∅. This is a contradiction. Therefore,
there does not exist K ∈ A such that a /∈ K and b /∈ K.
Conversely, assume that for any distinct I, J ∈ A there exist a, b ∈ S such
that a /∈ I and b /∈ J and there does not exist K ∈ A such that a /∈ K and
b /∈ K. Let I ′ and J ′ be distinct elements of A; then there exist a, b ∈ S such
that a /∈ I ′ and b /∈ J ′ and there does not exist K ∈ A such that a /∈ K and
b /∈ K. We have I ′ ∈ C∆(I(a)) and J ′ ∈ C∆(I(b)). Since there does not
exist K ∈ A such that a /∈ K and b /∈ K, C∆(I(a)) ∩ C∆(I(b)) = ∅. Hence
the structure space (A; τA) is the Hausdorff space.
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Theorem 2.9. The structure space (A; τA) is the regular space if and only
if for any I ∈ A and a ∈ S \ I there exists an ideal J of S such that
I ∈ C∆(I(b)) ⊆ ∆(J) ⊆ C∆(I(a)) for some b ∈ S.

Proof. Assume that the structure space (A; τA) is the regular space. Let
I ∈ A and a ∈ S \ I. We have I ∈ C∆(I(a)) and A \ C∆(I(a)) is a closed
set. By assumption, there exist disjoint open sets U and V such that I ∈ U
and A\C∆(I(a)) ⊆ V . We have A\V ⊆ C∆(I(a)) and A\V is closed. By
Theorem 2.2, A \ V = ∆(J) for some ideal J of S. So ∆(J) ⊆ C∆(I(a)).
Since U ∩ V = ∅, V ⊆ A \ U . Since A \ U is closed, A \ U = ∆(K) for
some ideal K of S. We have V ⊆ ∆(K). Since I ∈ U , I /∈ ∆(K). Then
K * I. Therefore, there exists b ∈ K \ I and so I ∈ C∆(I(b)). We claim
that V ⊆ ∆(I(b)). Let L ∈ V . Then L ∈ ∆(K). So K ⊆ L. Since b ∈ K,
b ∈ L and so L ∈ ∆(I(b)). So the claim follows.
Since A\∆(I(b)) ⊆ A\ V = ∆(J), it follows that C∆(I(b)) ⊆ ∆(J). Hence

I ∈ C∆(I(b)) ⊆ ∆(J) ⊆ C∆(I(a))

for some b ∈ S.
Conversely, assume that for any I ∈ A and a ∈ S \ I there exists an ideal J
of S such that I ∈ C∆(I(b)) ⊆ ∆(J) ⊆ C∆(I(a)) for some b ∈ S. Let I ∈ A
and let ∆(K) be a closed set not containing I. Then K * I. So there exists
a ∈ S such that a ∈ K and a /∈ I. By assumption, there exists an ideal J of
S such that

I ∈ C∆(I(b)) ⊆ ∆(J) ⊆ C∆(I(a))

for some b ∈ S. Since a ∈ K, C∆(I(a)) ∩∆(K) = ∅. So

∆(K) ⊆ A \ C∆(I(a)) ⊆ A \∆(J).

We have A\∆(J) is an open set with C∆(I(b))∩ (A\∆(J)) = ∅. Therefore,
the structure space (A; τA) is the regular space.

Theorem 2.10. The structure space (A; τA) is the compact space if and only
if for any {aα ∈ S | α ∈ Λ} there exists a subset {aαk

| k = 1, 2, . . . , n} such
that for any I ∈ A there exists aαk

such that aαk
/∈ I.

Proof. Assume that the structure space (A; τA) is the compact space. We
have that the set {C∆(I(aα)) | aα ∈ S} is an open cover of A. Then there
exists a finite set {C∆(I(ai)) | i = 1, 2, . . . , n} that is an open cover of A.
Hence {ai | i = 1, 2, . . . , n} is a finite subcollection of elements of S such that
for any I ∈ A there exists ai such that ai /∈ I.
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Conversely, assume that for any {aα ∈ S | α ∈ Λ} there exists a subset
{aαk

| k = 1, 2, . . . , n} such that for any I ∈ A there exists aαk
such that

aαk
/∈ I. Let {C∆(I(aα)) | aα ∈ S} be an open cover of A. Then there exists

a finite set {aαk
| k = 1, 2, . . . , n} such that for any I ∈ A there exists aαk

such that aαk
/∈ I. We have {C∆(I(aαk

)) | k = 1, 2, . . . , n} covers A. Hence
the structure space (A; τA) is the compact space.

Corollary 2.11. If S is finitely generated, then the structure space (A; τA)
is the compact space.

Proof. If {a1, a2, . . . , an} is a finite generating set of S, then for any I ∈ A
there exist ai1 , ai2 , . . . , aik ∈ S \ I. By Theorem 2.10, the structure space
(A; τA) is the compact space.

Let (S, .,≤) be an ordered semigroup. A element e in S is called an
idempotent of S if ee = e. The set of all idempotents of S will be written as
E(S). An ideal I of S is said to be full if E(S) ⊆ I. Let C be the collection
of all uniformly strongly prime full ideals of S. Then C ⊆ A and so (C; τC) is
a subtopological space of (A; τA).

Theorem 2.12. The structure space (C; τC) is the compact space.

Proof. Let {∆(Iα) | α ∈ Λ} be any collection of closed sets in C with the
finite intersection property. Let I be the uniformly strongly prime full ideal
generated by E(S). Since any uniformly strongly prime full ideal J contains
E(S), we have J contains I; hence I ∈ ∩α∈Λ∆(Iα) 6= ∅. Consequently, (C; τC)
is the compact space.

Theorem 2.13. The structure space (C; τC) is the connected space.

Proof. Let I be the uniformly strongly prime ideal generated by E(S). Since
any uniformly strongly prime full ideal J contains E(S), we have J contains
I. Hence I belongs to any closed set ∆(I ′) of C. Therefore, any two closed
sets of C are not disjoint. Consequently, (C; τC) is the connected space.
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