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Abstract

In this paper, we study counting perfect matchings in linear chain

graphs, focusing on identically colored and alternatingly colored odd

faces, using recurrence relations. Our primary objective is to derive

explicit formulas for the numbers of perfect matchings in linear chain

graphs with identically colored odd faces. Furthermore, we establish a

relationship between the numbers of perfect matchings in linear chain

graphs with identically colored odd faces and strip snake chain graphs.

This relationship provides us with an alternative way of validating the

numbers of perfect matchings in linear chain graphs with the same

colored odd faces.

1 Introduction
All graphs considered in this paper will be finite, simple, and undirected.
Let G be a connected graph. A subgraph M of G is called a matching in
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G if M contains no adjacent edges and no isolated vertex. A matching M
of G is called a perfect matching in G if V (M) = V (G), where V (M) and
V (G) are the sets of all vertices in M and G, respectively. The number of
perfect matchings in G is represented by φ(G). Perfect matchings in graphs
are one of the fundamental objects that have been extensively studied in
the field of graph theory. Counting perfect matchings in graphs has gar-
nered significant attention in graph theory due to its relevance to various
counting problems. Many researchers have studied counting perfect match-
ings in graphs as follows: Okamoto, Uehara, and Uno [8] and Štefankovič,
Vigoda, and Wilmes [10] introduced algorithms for counting perfect match-
ings in graphs. Other ways to determine the numbers of perfect matchings
in graphs were shown in [5, 9]. The problem of approximately counting per-
fect matchings in graphs was studied in [4, 1, 3]. Dong, Yan, and Zhang
[2] showed the lower bound for the numbers of perfect matchings in the line
graph of a graph and characterized all connected graphs that give the sharp
lower bound. The recursive formulas for the numbers of perfect matchings
in graphs were found by Marandi, Nejah, and Behmaram in [7].

Let G be a connected plane graph. A face of G is an induced subgraph of
G which is a cycle. A face is classified as odd if it has an odd size and even

if it has an even size. Furthermore, an even face of a size divisible by four is
called a blue face, while an even face of a size that leaves a remainder of two
when divided by four is called a red face. Conversely, an odd face is referred
to as black if its size has a remainder of one when divided by four, and pink

if its size has a remainder of three when divided by four.

For each integer i, 1 ≤ i ≤ n, let Fi be a face with edge set E(Fi) =
{ei,1, ei,2, . . . , ei,mi

}, where mi is the size of Fi. A chain graph Gn is defined
as a connected plane graph with n faces F1, F2, . . . , Fn and having n − 1
shared edges, denoted by the edge ei,ki in Fi and the edge ei+1,1 in Fi+1, for
each i, 1 ≤ i ≤ n−1, where ki is referred to as a shared edge index of a chain
graph Gn. Consequently, a chain graph Gn has size m1+m2+· · ·+mn−n+1.

The chain graph G6 shown in figure 1 consists of the black faces F1, F2,
followed by the blue face F3, the red face F4, and the blue faces F5 and
F6. These faces have sizes m1 = 5, m2 = 5, m3 = 8, m4 = 6, m5 = 4 and
m6 = 8, respectively. Additionally, G6 has five shared edges, namely e1,3 =
e2,1, e2,4 = e3,1, e3,4 = e4,1, e4,3 = e5,1, and e5,3 = e6,1 with respect to the
shared edge indices k1 = 3, k2 = 4, k3 = 4, k4 = 3 and k5 = 3.

It is interesting that the study of chain graphs can be related to chemical
molecules. The structural formula of a chemical molecule is represented
in terms of graph theory by a molecular graph, also known as a chemical
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Figure 1: A chain graph G6

graph in mathematical chemistry. Vertices in a chemical graph represent the
compound’s atoms, while edges represent chemical bonds. Chemical graphs
are labeled graphs. Labels for the respective atom types are applied to its
vertices, while labels for the bond types are applied to its edges.

Based on the findings discussed in [6], the authors employed a recurrence
relation to count perfect matchings in various chain graphs Gn with n even
faces, exclusively all the red faces, all the blue faces, and alternating faces.
Motivated by these results, our study focuses on investigating the counting
perfect matchings in chain graphs composed of all the odd faces.

2 Perfect Matchings of Linear Chain Graphs,

Emphasizing Identically Colored and Al-

ternatingly Colored Faces
Let n be a positive integer. An linear chain graph On is a chain graph with
n odd faces of sizes m1, m2, . . . , mn, where a shared edge index ki = ⌈mi

2
⌉+1

for each i, 1 ≤ i ≤ n− 1.

Figure 2: A linear chain graph O4

In figure 2, the linear chain graph O4 consists of the black face F1, fol-
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lowed by the pink faces F2, F3, and the black face F4 of sizes m1 = 5, m2 =
7, m3 = 11, and m4 = 9, respectively. O4 contains three shared edges,
e1,4 = e2,1, e2,5 = e3,1, and e3,7 = e4,1 with respect to the shared edge indices
4, 5, 7.

In this section, we determine the number of perfect matchings in a linear
chain graph with identically colored and alternatingly colored odd faces using
the recurrence relation. Since a linear chain graph of odd order does not have
perfect matching, we only consider a linear chain graph with an even number
of odd faces. The following result provides the recurrence relations for the
number of perfect matchings in a linear chain graph containing all the black
faces.

Theorem 2.1. For every even positive integer n, let On be a linear chain

graph with all the black faces, and dn the number of perfect matchings in On.

Then the recurrence relation φ(On) = dn = 1 + dn−2, where n is even and

n ≥ 4 with the initial condition d2 = 2.

Proof. LetOn be a linear chain graph consisting of black facesD1, D2, . . . , Dn.
Let M be a perfect matching in On and E(M) the set of all edges in M .

For n = 2, we investigate the number of perfect matchings in O2 consid-
ering two cases.

Case 1. e1,1 ∈ E(M). Consider the black face D1. Since e1,1 ∈ E(M),
e1,2, e1,m1

/∈ E(M). Then E(M) ∩ E(D1) = {e1,1, e1,3, . . . , e1,k1−1}∪
{e1,m1−1, e1,m1−3, . . . , e1,k1+2}. Consider the black faceD2. Since e1,k1−1, e1,k1+2

∈ E(M), e1,k1 = e2,1, e1,k1+1 /∈ E(M). Thus, e2,m2
∈ E(M) and e2,2 /∈ E(M).

Then E(M) ∩ E(D2) = {e2,3, e2,5, . . . , e2,m2
}. Therefore, O2 has only one

perfect matching M that contains e1,1.
Case 2. e1,1 /∈ E(M). Consider the black face D1. Since e1,1 /∈ E(M),

e1,2, e1,m1
∈ E(M). Then E(M) ∩ E(D1) = {e1,2, e1,4, . . . , e1,k1−2}∪

{e1,m1
, e1,m1−2, . . . , e1,k1+1}. Consider the black faceD2. Since e1,k1−2, e1,k1+1 ∈

E(M), e1,k1−1, e1,k1 /∈ E(M). Thus, e2,2 ∈ E(M) and e2,m2
/∈ E(M). Then

E(M)∩E(D2) = {e2,2, e2,4, . . . , e2,m2−1}. Therefore, O2 has only one perfect
matching M that does not include e1,1.

In both cases, the number of perfect matchings in O2 consisting of the
black faces D1 and D2 is φ(O2) = d2 = 1 + 1 = 2.

Let n ≥ 4. We consider the number of perfect matchings in On consisting
of the black faces D1, D2, . . . , Dn.

Case 1. e1,1 ∈ E(M). Consider the black face D1. Since e1,1 ∈ E(M),
e1,2, e1,m1

/∈ E(M). Then E(M) ∩ E(D1) = {e1,1, e1,3, . . . , e1,k1−1}∪
{e1,m1−1, e1,m1−3, . . . , e1,k1+2}. Consider the black faceD2. Since e1,k1−1, e1,k1+2
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∈ E(M), e1,k1 = e2,1, e1,k1+1 /∈ E(M). Thus, e2,m2
∈ E(M) and e2,2 /∈ E(M).

Then E(M) ∩ E(D2) = {e2,3, e2,5, . . . , e2,m2
}. We continue this process, fol-

lowing the same manner as in the previous step, until reaching step n. Con-
sider the black face Dn. Since en−1,kn−1−1, en−1,kn−1+2 ∈ E(M), en−1,kn−1

=
en,1, en−1,kn−1+1 /∈ E(M). Thus, en,mn

∈ E(M) and en,2 /∈ E(M). Then
E(M) ∩ E(Dn) = {en,3, en,5, . . . , en,mn

}. Therefore, there is only one perfect
matching in On containing the edge e1,1.

Case 2. e1,1 /∈ E(M). Consider the black face D1. Since e1,1 /∈ E(M),
e1,2, e1,m1

∈ E(M). Then E(M) ∩ E(D1) = {e1,2, e1,4, . . . , e1,k1−2}∪
{e1,m1

, e1,m1−2, . . . , e1,k1+1}. Consider the black faceD2. Since e1,k1−2, e1,k1+1 ∈
E(M), e1,k1−1, e1,k1 /∈ E(M). Thus, e2,2 ∈ E(M) and e2,m2

/∈ E(M). Since
e2,k2−1, e2,k2+1 /∈ E(M), either e2,k2 = e3,1 ∈ E(M) or e2,k2 = e3,1 /∈ E(M).
We will consider e2,k2 in the next step. Then E(M) ∩ E(D2 − e2,k2) =
{e2,2, e2,4, . . . , e2,m2−1}−{e2,k2}. Consider the black faceD3. Since e3,1 = e2,k2
and e2,k2−1, e2,k2+1 /∈ E(M), it is sufficient to consider the perfect matching
M in On−2 consisting of the black faces D3, D4, . . . , Dn. That is we con-
sider either e3,1 ∈ E(M) or e3,1 /∈ E(M). Therefore, On has dn−2 perfect
matchings that do not contain e1,1.

In both cases, the number of perfect matchings in On consisting of the
black faces D1, D2, . . . , Dn is φ(On) = dn = 1 + dn−2.

Hence, we derive the recurrence relation φ(On) = dn = 1+ dn−2, where n
is even and n ≥ 4 with the initial condition d2 = 2.

We now present the recurrence relations for the number of perfect match-
ings in a linear chain graph containing all the pink faces as follows:

Theorem 2.2. For every even positive integer n, let On be a linear chain

graph with all the pink faces and pn the number of perfect matchings in On.

Then the recurrence relation φ(On) = pn = 1 + pn−2, where n is even and

n ≥ 4 with the initial condition p2 = 2.

With the aid of Theorems 2.1 and 2.2, we are able to establish the explicit
formula for the number of perfect matchings in a linear chain graph with
identically colored odd faces as follows:

Corollary 2.3. For every even positive integer n, let On be a linear chain

graph with all faces in the same color. Then φ(On) =
n

2
+ 1, where n is even

and n ≥ 2.

Next, we present the recurrence relations for the numbers of perfect
matchings in linear chain graphs with alternating colored faces of black and
pink.
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Theorem 2.4. For every even positive integer n, let An be a linear chain

graph consisting of alternating colored faces starting with the pink face and

pn the number of perfect matchings in An. Then the recurrence relation

φ(An) = pn = pn−2 + pn−4, where n is even and n ≥ 6 with the initial

conditions p2 = 2 and p4 = 3.

Theorem 2.5. For every even positive integer n, let An be a linear chain

graph consisting of alternating colored faces starting with the black face and

dn the number of perfect matchings in An. Then the recurrence relation

φ(An) = dn = dn−2 + dn−4, where n is even and n ≥ 6 with the initial

conditions d2 = 2 and d4 = 3.

3 The Relationship between Strip Snake Chain

Graphs and Linear Chain Graphs

A snake chain graph Sn is a chain graph with n even faces of sizes
m1, m2, . . . , mn, where the shared edge indices k1 =

m1

2
+1 and ki 6= ⌈mi

2
⌉+1

for some i, 2 ≤ i ≤ n− 1. The numbers of perfect matchings of snake chain
graphs were studied in [6].

In particular types of snake chain graphs, we introduce the concept of
a strip snake chain graph. For a snake chain graph Sn with n blue faces
B1, B2, . . . , Bn where all shared edge indices are even, with the exception of
the first shared edge, we define a strip snake chain graph BSn obtained from
a snake chain graph Sn by adding n new edges ei (1 ≤ i ≤ n) and joining
two nonadjacent vertices in the blue faces Bi. Then, the blue face Bi with
an edge ei is called a blue strip face Bi + ei with a strip edge ei of BSn.

For instance, a strip snake chain graph BS5 of figure 3 consists of the
blue strip faces B1 + e1, B2 + e2, B3 + e3, B4 + e4, and B5 + e5 where shared
edge indices k1 = 5, k2 = 8, k3 = 6, and k4 = 6.

In this section, we determine the number of perfect matchings of strip
snake chain graphs. In order to do this, let us introduce some definitions and
notation. For a strip snake chain graph BSn with n blue strip faces Bi + ei
where edge set E(Bi) = {ei,1, ei,2, . . . , ei,mi

} for each i, 1 ≤ i ≤ n. First, we
define the new edge set of Bi as E(Bi) = {fi,1, fi,2, . . . , fi,mi

} by identifying
share edge ei,ki = fi,mi

2
+1 for each i, 1 ≤ i ≤ n − 1 and en−1,kn−1 = fn,1 and

then arranging the remaining new edges in a clockwise manner.
To illustrate these concepts, consider a strip snake chain graph BS5 of

figure 3 having the new shared edges f1,5 = e1,5 = e2,1, f2,7 = e2,8 = e3,1, f3,5 =
e3,6 = e4,1, and f4,5 = e4,6 = e5,1.
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Figure 3: Strip snake chain graphs BS5 consisting of the blue strip faces
B1 + e1, B2 + e2, B3 + e3, B4 + e4, and B5 + e5

Now, we are able to present the recurrence relation for the numbers of
perfect matchings in strip snake chain graphs as follows:

Theorem 3.1. For every positive integer n, let BSn be a strip snake chain

graph and sn the number of perfect matchings in BSn. Then the recurrence

relation φ(BSn) = sn = sn−1 + 1, where n ≥ 2 with the initial condition

s1 = 2.

Proof. Let BSn be a strip snake chain graph with the blue strip faces B1 +
e1, B2+e2, . . . , Bn+en. For some li, 3 ≤ li ≤

mi

2
−1, let fi,li, fi,li+1, fi,mi−li+2,

and fi,mi−li+3 be edges that are adjacent to the strip edge ei. Let M be a
perfect matching in BSn and E(M) the set of all edges in M .

Let n = 1. We consider the number of perfect matchings in BS1 consisting
of the blue strip face B1 + e1.

Case 1. f1,1 ∈ E(M). Since f1,1 ∈ E(M), f1,2, f1,m1
/∈ E(M). Then

{f1,1, f1,3, . . . , f1,m1−1} ⊆ E(M). Since l1 and m1− l1+3 are not even or odd
simultaneously, either f1,l1 ∈ E(M) or f1,m1−l1+3 ∈ E(M). Thus, e1 /∈ E(M).
Then E(M) = {f1,1, f1,3, . . . , f1,m1−1}. Hence, there exists exactly one perfect
matching in BS1 containing f1,1.

Case 2. f1,1 /∈ E(M). Since f1,1 /∈ E(M), f1,2, f1,m1
∈ E(M). Then

{f1,2, f1,4, . . . , f1,m1
} ⊆ E(M). Since l1 and m1 − l1 + 3 are not even or odd

simultaneously, either f1,l1 ∈ E(M) or f1,m1−l1+3 ∈ E(M). Thus, e1 /∈ E(M).
Then E(M) = {f1,2, f1,4, . . . , f1,m1

}. Hence, there exists only one perfect
matching in BS1 containing no f1,1.

From Case 1 and Case 2, the number of perfect matchings in BS1 con-
sisting of the blue strip face B1 + e1 is φ(BS1) = s1 = 1 + 1 = 2.
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Let n ≥ 2. We consider the number of perfect matchings in BSn consist-
ing of the blue strip faces B1 + e1, B2 + e2, . . . , Bn + en.

Case 1. f1,1 ∈ E(M). Consider the blue strip face B1 + e1. Since
f1,1 ∈ E(M), f1,m1

2

, f1,m1

2
+2 /∈ E(M), and either the shared edge f1,m1

2
+1 =

e2,1 ∈ E(M) or f1,m1

2
+1 = e2,1 /∈ E(M). We will consider f1,m1

2
+1 in the next

step. Then {f1,1, f1,3, . . . , f1,m1−1}−{f1,m1

2
+1} ⊆ E(M)∩E(B1+e1−f1,m1

2
+1).

Since l1 andm1−l1+3 are not even or odd simultaneously, either f1,l1 ∈ E(M)
or f1,m1−l1+3 ∈ E(M). Thus, e1 /∈ E(M). Then E(M) ∩ E(B1 + e1 −
f1,m1

2
+1) = {f1,1, f1,3, . . . , f1,m1−1} − {f1,m1

2
+1}. Consider the blue strip face

B2 + e2. We have a shared edge e2,1 = f1,m1

2
+1, and f1,m1

2

, f1,m1

2
+2 /∈ E(M).

If e2,1 ∈ E(M), then {e2,1, e2,3, . . . , e2,m2−1} ⊆ E(M) ∩ E(B2 + e2). Since
k2 is even, e2,k2 = f2,m2

2
+1 /∈ E(M). Since m2

2
+ 1 is odd, f2,1 /∈ E(M).

If e2,1 /∈ E(M), then {e2,2, e2,4, . . . , e2,m2
} ⊆ E(M) ∩ E(B2 + e2). Since k2

is even, e2,k2 = f2,m2

2
+1 ∈ E(M). Since m2

2
+ 1 is odd, f2,1 ∈ E(M). It

is sufficient to consider the perfect matching M in BSn−1 consisting of the
blue strip faces B2 + e2, B3 + e3, . . . , Bn + en. That is, we consider either
f2,1 ∈ E(M) or f2,1 /∈ E(M). Hence, there exist sn−1 perfect matchings in
BSn containing f1,1.

Case 2. f1,1 /∈ E(M). Consider the blue strip face B1 + e1. Since f1,1 /∈
E(M), {f1,2, f1,4, . . . , f1,m1

} ⊆ E(M)∩E(B1+e1). Since l1 andm1−l1+3 are
not even or odd simultaneously, either f1,l1 ∈ E(M) or f1,m1−l1+3 ∈ E(M).
Thus, e1 /∈ E(M). Then E(M)∩E(B1+e1) = {f1,2, f1,4, . . . , f1,m1

}. Consider
the blue strip face B2 + e2. Since f1,m1

2

, f1,m1

2
+2 ∈ E(M), e2,1, e2,2, e2,m2

/∈

E(M). Then {e2,3, e2,5, . . . , e2,m2−1} ⊆ E(M)∩E(B2+e2). Since l2 and m2−
l2+3 are not even or odd simultaneously and l2+1 andm2−l2+2 are not even
or odd simultaneously, either f2,l2 ∈ E(M) or f2,m2−l2+3 ∈ E(M) and either
f2,l2+1 ∈ E(M) or f2,m2−l2+2 ∈ E(M). Thus, e2 /∈ E(M). Then E(M) ∩
E(B2 + e2) = {e2,3, e2,5, . . . , e2,m2−1}. Since k2 is even, e2,k2 = f2,m2

2
+1 /∈

E(M). Since m2

2
+ 1 is odd, f2,m2

2

, f2,m2

2
+2 ∈ E(M). Proceed similarly up to

step n. Consider the blue strip face Bn + en. Since f
n−1,

mn−1

2

, f
n−1,

mn−1

2
+2

∈

E(M), en,1, en,2, en,mn
/∈ E(M). Then {en,3, en,5, . . . , en,mn−1} ⊆ E(M) ∩

E(Bn+ en). Since ln and mn− ln+3 are not even or odd simultaneously and
ln+1 and mn−ln+2 are not even or odd simultaneously, either fn,ln ∈ E(M)
or fn,mn−ln+3 ∈ E(M) and either fn,ln+1 ∈ E(M) or fn,mn−ln+2 ∈ E(M).
Thus, en /∈ E(M). Then E(M) ∩ E(Bn + en) = {en,3, en,5, . . . , en,mn−1}.
Hence, there exists exactly one perfect matching in BSn containing no f1,1
in BSn.

From Case 1 and Case 2, the number of perfect matchings in BSn con-
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sisting of the blue strip faces B1 + e1, B2 + e2, . . . , Bn + en is φ(BSn) = sn =
sn−1 + 1.

Therefore, we obtain the recurrence relation φ(BSn) = sn = sn−1 + 1,
where n ≥ 2 with the initial condition s1 = 2.

We obtain the explicit formula to determine the number of perfect match-
ings in a strip snake chain graph. This is achieved by using a recurrence
relation as follows:

Corollary 3.2. For every positive integer n, let BSn be a strip snake chain

graph. Then the number of perfect matchings is φ(BSn) = n + 1, where

n ≥ 1.

The following corollary is an immediate consequence of the proof of The-
orem 3.1.

Corollary 3.3. A perfect matching in a strip snake chain graph contains no

strip edge.

In addition to counting perfect matchings in linear chain graphs with all
faces in the same color using the recurrence relation as in the previous section,
we now present the relationship between the numbers of perfect matchings
in linear chain graphs with identically colored faces and strip snake chain
graphs.

Theorem 3.4. For every positive integer n, a linear chain graph with all

faces in the same color O2n is a strip snake chain graph BSn. In particular,

φ(O2n) = φ(BSn).

By combining Corollary 3.2 and Theorem 3.4, it allows us to use this
relationship to verify the number of perfect matchings in a linear chain graph
with all faces in the same color as the following theorem.

Theorem 3.5. For every positive integer n, let O2n be a linear chain graph

with all faces in the same color. Then, φ(O2n) = n+ 1.

4 Conclusion
In this paper, we have discussed counting perfect matchings in linear chain
graphs using recurrence relations with identically colored and alternatingly
colored odd faces. We have obtained the explicit formulas for the numbers
of perfect matchings in linear chain graphs with all faces in the same color,
which depend on the number of their faces. Furthermore, the relationship
between strip snake chain graphs and linear chain graphs provides us with
an alternative way for validating the numbers of perfect matchings in linear
chain graphs with the same colored odd faces.
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