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Abstract

We introduce and study properties of a radical in near-rings which

is a generalization of the Jacobson radical of rings. Moreover, we

proved that this radical is hereditary. Furthermore, we compare this

radical with the existing Jacobson type radicals of near-rings.
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1 Introduction

Nearrings are right nearrings. Jacobson radicals of nearrings J2 and J3 are
Kurosh-Amitsur radicals in zerosymmmetric nearrings and are also ideal-
hereditary in the same class ([3], [2]). Moreover, J2 fails to be Kurosh-
Amitsur in nearrings. It is not known whether J3 is Kurosh-Amotsur in
nearrings ([6]).
In this paper, we introduce a (left) Jacobson radical J2∗ in nearrings and
proved that J2∗ is ideal-hereditary in zerosymmetric nearrings. Also, for a
nearring S, J2(S) ⊆ J2∗(S) ⊆ J3(S). It is known that for a nearring S,
J2(S) ⊆ J5/2(S) ⊆ J3(S) ([5]). It is established that the radicals J5/2, J2∗ are
independent. Even though an S-group of type 2∗ has the basic characteristics
of an S-group of type 3, some natural nearrings are presented which could be
retained as J2∗-semisimple nearrings even though they are J3-radical near-
rings.
In this paper, S stands for a right nearring and S0 is the zerosymmetric part
of S. A group (Γ,+) is a (left) S-group if there is mapping (s, γ) → sγ of
S × Γ into Γ such that:

(i) (s+ t)γ = sγ + tγ;

(ii) (st)γ = s(tγ) for all s, t ∈ S, γ ∈ Γ.

Consider an S-group Γ. A normal subgroup ∆ of (Γ,+) is an ideal of the
S-group Γ if s(γ + δ)− sγ ∈ ∆ for all s ∈ S, γ ∈ Γ, δ ∈ ∆. Also a subgroup
∆ of (Γ,+) is an S-subgroup of the S-group Γ if sδ ∈ ∆ for all s ∈ S, δ ∈ ∆.
γ ∈ Γ is a generator of the S-group Γ if Sγ = Γ. S-group Γ is monogenic if
it has a generator. An S-group Γ is S-simple if it has no S-subgroups except
S0 and Γ.
A monogenic S-group Γ with Γ 6= {0} is type 2 if Γ is S0-simple.
Γ is of type 5/2 if it of type 2 and Sγ = Γ for all 0 6= γ ∈ Γ ([5]).
An S-group Γ is of type3 if it of type 2 and γ1, γ2 ∈ Γ and sγ1 = sγ2 for all
s ∈ S implies γ1 = γ2.
Note that an S-group of type3 is of type-5/2 and an S-group of type-5/2 is
of type 2.
A mapping ̺ on nearrings such that ̺(S) is an ideal of S for all nearrings S
is an ideal-mapping.
A Hoehnke radical (H-radical) ̺ is an ideal-mapping satisfying:

(i) S is a nearring and t is a homomorphism of S implies t(̺(S)) ⊆ ̺(t(S));

(ii) S is a nearring implies ̺(S/̺(S)) = {0}.
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A H-radical ̺ satisfying, ̺(̺(S)) = ̺(S) for all nearrings S, is called idem-
potent.
A H-radical ̺ satisfying, ̺(K) = K implies K ⊆ ̺(S) for all ideals K of a
nearring S, is called complete.
A complete, idempotent H-radical is a Kurosh-Amitsur radical.
A H-radical ̺ is ideal-hereditary if S is a nearring and J is an ideal of S
implies ̺(J) = J ∩ ̺(S).

2 S-groups of type 2
∗ and the J2∗ radical

In this section, we only consider zerosymmetric nearring. S denotes a ze-
rosymmetric nearring and Γ a (left) S-group.
Consider Γ, which is an S-group of type 2 . For γ ∈ Γ, Sγ is an S-subgroup
of Γ. So either Sγ = {0} or Γ. We define Γ0 := {γ ∈ Γ | Sγ = {0}} and
Γ1 := {γ ∈ Γ | Sγ = Γ}. We have Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. Also, Γ0

does not contain a subgroup of Γ as Γ is an S-group of type 2.

Definition 2.1. Let Γ be a type-2, S-group. Then Γ is a type 2∗, S-group
if γ1, γ2 ∈ Γ1 and sγ1 = sγ2 for all s ∈ S implies γ1 = γ2.

Lemma 2.2. Suppose that K is an ideal of S and Γ is a type 2∗, K-group.
Then Γ is a type 2∗, S-group.

Proof. K is an ideal of S and Γ is a type 2∗, K-group. So Γ is a type 2,
K-group and it has a generator γ0. It is clear that h : K → Γ defined
by h(k) = kγ0, k ∈ K, is a K−epimorphism with kernel M := (0 : γ0)K .
So K/M is K-isomorphic to Γ. Now, K/M is a type 2, K-group and by
Theorem 3.34 of [4], K/M is a type 2, S-group, where s(k+M) = sk +M .
From the proof of the theorem, for x +M ∈ K/M , S(x +M) = M implies
K(x + M) = M . So, for x + M ∈ K/M , K(x + M) = M if and only if
S(x + M) = M and hence x + M is a generator of the K-group K/M if
and only if it act as a generator of S-group K/M . Let x1 + M,x2 + M
be generators of the S-group K/M with t(x1 + M) = t(x2 + M) for all
t ∈ S. Now x1 + M,x2 + M are generators of the K-group K/M and
p(x1 + M) = p(x2 + M) for all p ∈ K. Since K/M is a type 2∗, K-group,
x1 +M = x2 +M . Therefore, K/M is a type 2∗, S-group. Hence Γ is a type
2∗, S-group.

Remark 2.3. In Lemma 2.2, g given by g(p+M) = pγ0 is a K-isomorphism
from K/M onto Γ and K/M is an S-group with s(k +M) = sk +M, s ∈ S.
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Let γ ∈ Γ. We have γ = kγ0, for some k ∈ K. Define sγ = s(kγ0) =
s(g(k+M)) := g(sk+M). Since g is a K-isomorphism, this action of S on
Γ makes Γ an S-group. Moreover g is an S-isomorphism of K/M onto Γ.
Since K/M is a type 2∗, S-group, Γ is a type 2∗, S-group. In addition, the
restricted action of S to K on Γ is same as the existing one of K on Γ.

Definition 2.4. Let S/M be a type 2∗, S-group, M is a modular left ideal
of S. Then M is called a 2∗-modular left ideal of S.

Definition 2.5. An ideal K of S is 2∗-primitive if K = (0 : Γ) := {s ∈ S |
sγ = {0}} for some S-group Γ of type 2∗. S is a 2∗-primitive nearring if the
zero ideal of S is 2∗-primitive.

Definition 2.6. The (left) Jacobson radical of type 2∗ of S is the intersec-
tion of all 2∗-primitive ideals of S. It is denoted by J2∗(S).

Remark 2.7. J2∗(S) = ∩{Q | Q is a 2∗ primitive ideal of S} = ∩{(0 : Γ) | Γ
is an S-group of type2∗} = ∩{M | M is a 2∗-modular left ideal of S}.

Theorem 2.8. J2∗(S) ∩K ⊆ J2∗(K), for any ideal K of S.

Proof. We have that K is an ideal of S. If there is no K-group of type 2∗,
then J2∗(S)∩K ⊆ K = J2∗(K). Suppose that Γ is a K-group of type 2∗. By
Lemma 2.2, Γ is a type 2∗, S-group, with (0 : Γ)S∩K = (0 : Γ)K . Therefore,
J2∗(S) ∩K ⊆ J2∗(K).

Remark 2.9. J2∗ is the H-radical in zerosymmetric nearrings determined
by the class of all 2∗-primitive nearrings.

Corollary 2.10. J2∗ is an idempotent radical in zerosymmetric nearrings.

Proof. Let K := J2∗(S). By Theorem 2.8, J2∗(S) = J2∗(S) ∩ J2∗(S) ⊆
J2∗(J2∗(S)). Obviously, J2∗(J2∗(S)) ⊆ J2∗(S). Therefore, J2∗(J2∗(S)) =
J2∗(S) and hence J2∗ is an idempotent radical.

Lemma 2.11. Suppose that K is an ideal of S and Γ is an S-group of type
2∗ with KΓ 6= {0}. Then Γ is a K-group of type 2∗.

Proof. We have that K is an ideal of S and Γ is a type 2∗, S-group and
KΓ 6= {0}. Let ∆ 6= {0} be a K-subgroup of Γ. We have K∆ ⊆ ∆. Suppose
that K∆ = {0}. Now, S∆ 6= {0}. We get δ ∈ ∆ such that Sδ 6= {0}. So
Sδ = Γ. Now, KΓ = K(Sδ) = (KS)δ ⊆ Kδ = {0}, a contradiction. So
K∆ 6= {0}. Hence δ0 ∈ ∆ such that Kδ0 6= {0}. Since S(Kδ0) = (SK)δ0 ⊆
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Kδ0, Kδ0 = Γ and ∆ = Γ. Therefore, Γ is a K-group of type 2. Let δ1, δ2 ∈ Γ
and Kδ1 = Γ = Kδ2. It is clear that Sδ1 = Γ = Sδ2. Suppose that kδ1 = kδ2
for all k ∈ K. We claim that (0 : δ1)S and (0 : δ2)S are equal. On the
contrary suppose that are different. Since S/(0 : δi)S is S-isomorphic to Γ,
i = 1, 2, we have S = (0 : δ2)S + (0 : δ1)S. We get e1, e2 ∈ K such that
e1δ1 = δ1 and e2δ1 = δ2. Now, Ke1 + (0 : δ1)K = K = Ke2e1 + (0 : δ1)K . Let
c ∈ K ⊆ S = (0 : δ1)S + (0 : δ2)S. Now, c = a+ b, a ∈ (0 : δ1)S, b ∈ (0 : δ2)S.
Let x ∈ K. xc = x(a + b) = (x(a + b) − xb) + xb ∈ ((0 : δ1)S ∩ K) + ((0 :
δ2)S ∩K) = (0 : δ1)K as kδ1 = kδ2, for all k ∈ K. Therefore, K2 ⊆ (0 : δ1)K .
We have e1 = ye1 + d, y ∈ K, d ∈ (0 : δ1)K as K = Ke1 + (0 : δ1)K . Also,
xe1 = x(ye1+d) = (x(ye1+d)−xye1)+xye1 ∈ (0 : δ1)K+(0 : δ1)K = (0 : δ1)K ,
as K2 ⊆ (0 : δ1)K . Therefore, K = Ke1 + (0 : δ1)K ⊆ (0 : δ1)K + (0 : δ1)K =
(0 : δ1)K , a contradiction. So (0 : δ1)S and (0 : δ2)S are equal. Let s ∈ S.
Now, s− se1 ∈ (0 : δ2)S. So sδ2 = (se1)δ2. Moreover, (se1)δ1 = (se1)δ2. For
all s ∈ S, sδ1 = (se1)δ1 = (se1)δ2 = sδ2. Therefore, δ1 = δ2 and hence Γ is a
type 2∗ K-group.

Theorem 2.12. If K is an ideal of S, then J2∗(K) ⊆ K ∩ J2∗(S).

Proof. We have that K is an ideal of S. Suppose there is no S-group of type
2∗ . Clearly, J2∗(S) = S and J2∗(K) ⊆ K ∩ J2∗(S). Let Γ be an S-group of
type 2∗ . If K ⊆ (0 : Γ)S, then K = K ∩ (0 : Γ)S. So assume that K 6⊆ (0 :
Γ)S. By Lemma 2.11, Γ is a type 2∗, K-group and K ∩ (0 : Γ)S = (0 : Γ)K .
Therefore, J2∗(K) ⊆ K ∩ J2∗(S).

Corollary 2.13. J2∗ is a complete radical in zerosymmetric nearrings.

Proof. Let K be an ideal of S and J2∗(K) = K. By Theorem 2.12, K =
J2∗(K) ⊆ K ∩J2∗(S) and that K ⊆ J2∗(S). So J2∗ is a complete radical.

Let K be an ideal of S. From Theorems 2.8 and 2.12 it follows that
J2∗(K) = K ∩ J2∗(S). So we have:

Theorem 2.14. J2∗ is ideal-hereditary in the class of zerosymmetric near-
rings.

Corollary 2.15. J2∗ is a Kurosh-Amitsur radical in zerosymmetric near-
rings.



702K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

We now present a type 2∗, S-group that is not a type3, S-group. This
provides a nearring which a 2∗-primitive nearring but not a 3-primitive near-
ring.

Example 2.16. Let (Γ,+) be group of order greater than 2. Consider the
nearring M0(Γ). Let 0 ∈ ∆ be a subset of Γ containing no non-zero subgroup
of Γ with | ∆ |≥ 2. Now, S := {s ∈ M0(Γ) | s(γ) = 0 for all γ ∈ ∆} is a
subnearring of M0(Γ). S is a zerosymmetric nearring and Γ is an S-group
of type 2∗ . Since (0 : Γ)S = {0}, S is a 2∗-primitive nearring. Clearly,
Γ is not a S-group of type 3. It can be easily verified that S is not an
equiprime nearring. So, by Lemma 4.1 of [1], S is not a 3-primitive nearring.
Moreover, Γ is not an S-group of type 5/2 .

Remark 2.17. In Example 2.16, if Γ is a finite group, then, by Theorem
4.46 of [4], S is a simple nearring. This shows that we have simple nearrings
which are J2∗-semisimple and J3-radical nearrings.

Example 2.18. Suppose that (S,+) is a group of order p > 3, where p is a
prime number. Let 0 ∈ A be a subset of S with 2 ≤| A |≤ p − 2. Define a
product on S by s1.s2 = s1 if s2 6∈ A and s1.s2 = 0 if s2 ∈ A, s1, s2 ∈ S. S is
a zerosymmetric simple nearring. Moreover, S is a type 2, S-group and any
type 2, S-group is S-isomorphic to S. So S is a 2-primitive nearring. It is
clear that S is not a type 2∗, S-group and that there is no type 2∗, S-group.
Hence S is J2-semisimple and J2∗-radical nearring. Note that if A = {0},
then S is a type 5/2, S-group and that S is a simple 5/2-primitive nearring
which is a J2∗-radical nearring as S is not an S-group of type 2∗.

Remark 2.19. Note that an S-group type 2∗ has the basic characteristics
of an S-group of type 3. At the same time, as seen in example 2.16, some
natural nearrings are retained as J2∗-semisimple nearrings even though they
are J3-radical nearrings.
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