International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 697–703

On a Radical of Nearrings Which is Hereditary

Kilaru J. Lakshminarayana¹, V.B.V.N. Prasad², Srinivasa Rao Ravi³, A.V. Ramakrishna⁴

¹Research Scholar Department of Engineering Mathematics Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502 Guntur (Dist.), Andhra Pradesh, India

²Department of Engineering Mathematics Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502 Guntur (Dist.), Andhra Pradesh, India

³Department of Mathematics University College of Sciences, Acharya Nagarjuna University Nagarjuna Nagar-522510 Guntur (Dist.), Andhra Pradesh, India

⁴Department of Mathematics R.V.R and J.C College of Engineering, Chowdavaram-522019 Guntur (Dist.), Andhra Pradesh, India

email: 2002511005@kluniversity.in, vbvnprasad@kluniversity.in, dr_rsrao@yahoo.com, amathi7@gmail.com

(Received December 1, 2023, Accepted January 8, 2024, Published February 12, 2024)

Abstract

We introduce and study properties of a radical in near-rings which is a generalization of the Jacobson radical of rings. Moreover, we proved that this radical is hereditary. Furthermore, we compare this radical with the existing Jacobson type radicals of near-rings.

Key words and phrases: near-ring, S-group, S-group of type-2^{*}, J_{2^*} radical, KA-radical. AMS (MOS) Subject Classifications: 16Y30. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net 698 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

1 Introduction

Nearrings are right nearrings. Jacobson radicals of nearrings J_2 and J_3 are Kurosh-Amitsur radicals in zerosymmetric nearrings and are also ideal-hereditary in the same class ([3], [2]). Moreover, J_2 fails to be Kurosh-Amitsur in nearrings. It is not known whether J_3 is Kurosh-Amotsur in nearrings ([6]).

In this paper, we introduce a (left) Jacobson radical J_{2^*} in nearrings and proved that J_{2^*} is ideal-hereditary in zerosymmetric nearrings. Also, for a nearring S, $J_2(S) \subseteq J_{2^*}(S) \subseteq J_3(S)$. It is known that for a nearring S, $J_2(S) \subseteq J_{5/2}(S) \subseteq J_3(S)$ ([5]). It is established that the radicals $J_{5/2}, J_{2^*}$ are independent. Even though an S-group of type 2* has the basic characteristics of an S-group of type 3, some natural nearrings are presented which could be retained as J_{2^*} -semisimple nearrings even though they are J_3 -radical nearrings.

In this paper, S stands for a right nearring and S_0 is the zerosymmetric part of S. A group $(\Gamma, +)$ is a (left) S-group if there is mapping $(s, \gamma) \to s\gamma$ of $S \times \Gamma$ into Γ such that:

- (i) $(s+t)\gamma = s\gamma + t\gamma;$
- (ii) $(st)\gamma = s(t\gamma)$ for all $s, t \in S, \gamma \in \Gamma$.

Consider an S-group Γ . A normal subgroup Δ of $(\Gamma, +)$ is an *ideal* of the S-group Γ if $s(\gamma + \delta) - s\gamma \in \Delta$ for all $s \in S, \gamma \in \Gamma, \delta \in \Delta$. Also a subgroup Δ of $(\Gamma, +)$ is an S-subgroup of the S-group Γ if $s\delta \in \Delta$ for all $s \in S, \delta \in \Delta$. $\gamma \in \Gamma$ is a generator of the S-group Γ if $S\gamma = \Gamma$. S-group Γ is monogenic if it has a generator. An S-group Γ is S-simple if it has no S-subgroups except S0 and Γ .

A monogenic S-group Γ with $\Gamma \neq \{0\}$ is type 2 if Γ is S₀-simple.

 Γ is of type 5/2 if it of type 2 and $S\gamma = \Gamma$ for all $0 \neq \gamma \in \Gamma$ ([5]).

An S-group Γ is of type3 if it of type 2 and $\gamma_1, \gamma_2 \in \Gamma$ and $s\gamma_1 = s\gamma_2$ for all $s \in S$ implies $\gamma_1 = \gamma_2$.

Note that an S-group of type3 is of type-5/2 and an S-group of type-5/2 is of type 2.

A mapping ρ on nearrings such that $\rho(S)$ is an ideal of S for all nearrings S is an *ideal-mapping*.

A Hoehnke radical (H-radical) ρ is an ideal-mapping satisfying:

- (i) S is a nearring and t is a homomorphism of S implies $t(\varrho(S)) \subseteq \varrho(t(S))$;
- (ii) S is a nearring implies $\rho(S/\rho(S)) = \{0\}$.

A H-radical ρ satisfying, $\rho(\rho(S)) = \rho(S)$ for all nearrings S, is called *idem*potent.

A H-radical ρ satisfying, $\rho(K) = K$ implies $K \subseteq \rho(S)$ for all ideals K of a nearring S, is called *complete*.

A complete, idempotent H-radical is a Kurosh-Amitsur radical.

A H-radical ρ is *ideal-hereditary* if S is a nearring and J is an ideal of S implies $\rho(J) = J \cap \rho(S)$.

2 S-groups of type 2^* and the J_{2^*} radical

In this section, we only consider zerosymmetric nearring. S denotes a zerosymmetric nearring and Γ a (left) S-group.

Consider Γ , which is an S-group of type 2. For $\gamma \in \Gamma$, $S\gamma$ is an S-subgroup of Γ . So either $S\gamma = \{0\}$ or Γ . We define $\Gamma^0 := \{\gamma \in \Gamma \mid S\gamma = \{0\}\}$ and $\Gamma^1 := \{\gamma \in \Gamma \mid S\gamma = \Gamma\}$. We have $\Gamma = \Gamma^0 \cup \Gamma^1$ and $\Gamma^0 \cap \Gamma^1 = \emptyset$. Also, Γ^0 does not contain a subgroup of Γ as Γ is an S-group of type 2.

Definition 2.1. Let Γ be a type-2, S-group. Then Γ is a type 2^{*}, S-group if $\gamma_1, \gamma_2 \in \Gamma^1$ and $s\gamma_1 = s\gamma_2$ for all $s \in S$ implies $\gamma_1 = \gamma_2$.

Lemma 2.2. Suppose that K is an ideal of S and Γ is a type 2^{*}, K-group. Then Γ is a type 2^{*}, S-group.

Proof. K is an ideal of S and Γ is a type 2^{*}, K-group. So Γ is a type 2, K-group and it has a generator γ_0 . It is clear that $h : K \to \Gamma$ defined by $h(k) = k\gamma_0, k \in K$, is a K-epimorphism with kernel $M := (0 : \gamma_0)_K$. So K/M is K-isomorphic to Γ . Now, K/M is a type 2, K-group and by Theorem 3.34 of [4], K/M is a type 2, S-group, where s(k+M) = sk+M. From the proof of the theorem, for $x + M \in K/M$, S(x + M) = M implies K(x + M) = M. So, for $x + M \in K/M$, K(x + M) = M if and only if S(x + M) = M and hence x + M is a generator of the K-group K/M if and only if it act as a generator of S-group K/M. Let $x_1 + M, x_2 + M$ be generators of the S-group K/M with $t(x_1 + M) = t(x_2 + M)$ for all $t \in S$. Now $x_1 + M, x_2 + M$ are generators of the K-group K/M and $p(x_1 + M) = p(x_2 + M)$ for all $p \in K$. Since K/M is a type 2^{*}, K-group, $x_1 + M = x_2 + M$. Therefore, K/M is a type 2^{*}, S-group. Hence Γ is a type 2^{*}, S-group.

Remark 2.3. In Lemma 2.2, g given by $g(p+M) = p\gamma_0$ is a K-isomorphism from K/M onto Γ and K/M is an S-group with $s(k+M) = sk + M, s \in S$.

700 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

Let $\gamma \in \Gamma$. We have $\gamma = k\gamma_0$, for some $k \in K$. Define $s\gamma = s(k\gamma_0) = s(g(k+M)) := g(sk+M)$. Since g is a K-isomorphism, this action of S on Γ makes Γ an S-group. Moreover g is an S-isomorphism of K/M onto Γ . Since K/M is a type 2^{*}, S-group, Γ is a type 2^{*}, S-group. In addition, the restricted action of S to K on Γ is same as the existing one of K on Γ .

Definition 2.4. Let S/M be a type 2^* , S-group, M is a modular left ideal of S. Then M is called a 2^* -modular left ideal of S.

Definition 2.5. An ideal K of S is 2*-primitive if $K = (0 : \Gamma) := \{s \in S \mid s\gamma = \{0\}\}$ for some S-group Γ of type 2*. S is a 2*-primitive nearring if the zero ideal of S is 2*-primitive.

Definition 2.6. The (left) Jacobson radical of type 2^* of S is the intersection of all 2^* -primitive ideals of S. It is denoted by $J_{2^*}(S)$.

Remark 2.7. $J_{2^*}(S) = \bigcap \{Q \mid Q \text{ is a } 2^* \text{ primitive ideal of } S\} = \bigcap \{(0 : \Gamma) \mid \Gamma \text{ is an } S \text{-group of type} 2^*\} = \bigcap \{M \mid M \text{ is a } 2^* \text{-modular left ideal of } S\}.$

Theorem 2.8. $J_{2*}(S) \cap K \subseteq J_{2*}(K)$, for any ideal K of S.

Proof. We have that K is an ideal of S. If there is no K-group of type 2^* , then $J_{2^*}(S) \cap K \subseteq K = J_{2^*}(K)$. Suppose that Γ is a K-group of type 2^* . By Lemma 2.2, Γ is a type 2^* , S-group, with $(0:\Gamma)_S \cap K = (0:\Gamma)_K$. Therefore, $J_{2^*}(S) \cap K \subseteq J_{2^*}(K)$.

Remark 2.9. J_{2^*} is the *H*-radical in zerosymmetric nearrings determined by the class of all 2^* -primitive nearrings.

Corollary 2.10. J_{2^*} is an idempotent radical in zerosymmetric nearrings.

Proof. Let $K := J_{2*}(S)$. By Theorem 2.8, $J_{2*}(S) = J_{2*}(S) \cap J_{2*}(S) \subseteq J_{2*}(J_{2*}(S))$. Obviously, $J_{2*}(J_{2*}(S)) \subseteq J_{2*}(S)$. Therefore, $J_{2*}(J_{2*}(S)) = J_{2*}(S)$ and hence J_{2*} is an idempotent radical.

Lemma 2.11. Suppose that K is an ideal of S and Γ is an S-group of type 2^* with $K\Gamma \neq \{0\}$. Then Γ is a K-group of type 2^* .

Proof. We have that K is an ideal of S and Γ is a type 2^{*}, S-group and $K\Gamma \neq \{0\}$. Let $\Delta \neq \{0\}$ be a K-subgroup of Γ . We have $K\Delta \subseteq \Delta$. Suppose that $K\Delta = \{0\}$. Now, $S\Delta \neq \{0\}$. We get $\delta \in \Delta$ such that $S\delta \neq \{0\}$. So $S\delta = \Gamma$. Now, $K\Gamma = K(S\delta) = (KS)\delta \subseteq K\delta = \{0\}$, a contradiction. So $K\Delta \neq \{0\}$. Hence $\delta_0 \in \Delta$ such that $K\delta_0 \neq \{0\}$. Since $S(K\delta_0) = (SK)\delta_0 \subseteq$

 $K\delta_0, K\delta_0 = \Gamma$ and $\Delta = \Gamma$. Therefore, Γ is a K-group of type 2. Let $\delta_1, \delta_2 \in \Gamma$ and $K\delta_1 = \Gamma = K\delta_2$. It is clear that $S\delta_1 = \Gamma = S\delta_2$. Suppose that $k\delta_1 = k\delta_2$ for all $k \in K$. We claim that $(0 : \delta_1)_S$ and $(0 : \delta_2)_S$ are equal. On the contrary suppose that are different. Since $S/(0:\delta_i)_S$ is S-isomorphic to Γ , i = 1, 2, we have $S = (0 : \delta_2)_S + (0 : \delta_1)_S$. We get $e_1, e_2 \in K$ such that $e_1\delta_1 = \delta_1$ and $e_2\delta_1 = \delta_2$. Now, $Ke_1 + (0:\delta_1)_K = K = Ke_2e_1 + (0:\delta_1)_K$. Let $c \in K \subseteq S = (0:\delta_1)_S + (0:\delta_2)_S$. Now, $c = a + b, a \in (0:\delta_1)_S, b \in (0:\delta_2)_S$. Let $x \in K$. $xc = x(a + b) = (x(a + b) - xb) + xb \in ((0 : \delta_1)_S \cap K) + ((0 : \delta_1)_S \cap K))$ $\delta_2 \rangle_S \cap K = (0:\delta_1)_K$ as $k\delta_1 = k\delta_2$, for all $k \in K$. Therefore, $K^2 \subseteq (0:\delta_1)_K$. We have $e_1 = ye_1 + d, y \in K, d \in (0 : \delta_1)_K$ as $K = Ke_1 + (0 : \delta_1)_K$. Also, $xe_1 = x(ye_1+d) = (x(ye_1+d) - xye_1) + xye_1 \in (0:\delta_1)_K + (0:\delta_1)_K = (0:\delta_1)_K,$ as $K^2 \subseteq (0:\delta_1)_K$. Therefore, $K = Ke_1 + (0:\delta_1)_K \subseteq (0:\delta_1)_K + (0:\delta_1)_K =$ $(0:\delta_1)_K$, a contradiction. So $(0:\delta_1)_S$ and $(0:\delta_2)_S$ are equal. Let $s \in S$. Now, $s - se_1 \in (0 : \delta_2)_S$. So $s\delta_2 = (se_1)\delta_2$. Moreover, $(se_1)\delta_1 = (se_1)\delta_2$. For all $s \in S$, $s\delta_1 = (se_1)\delta_1 = (se_1)\delta_2 = s\delta_2$. Therefore, $\delta_1 = \delta_2$ and hence Γ is a type 2^* K-group.

Theorem 2.12. If K is an ideal of S, then $J_{2*}(K) \subseteq K \cap J_{2*}(S)$.

Proof. We have that K is an ideal of S. Suppose there is no S-group of type 2^* . Clearly, $J_{2^*}(S) = S$ and $J_{2^*}(K) \subseteq K \cap J_{2^*}(S)$. Let Γ be an S-group of type 2^* . If $K \subseteq (0:\Gamma)_S$, then $K = K \cap (0:\Gamma)_S$. So assume that $K \not\subseteq (0:\Gamma)_S$. By Lemma 2.11, Γ is a type 2^* , K-group and $K \cap (0:\Gamma)_S = (0:\Gamma)_K$. Therefore, $J_{2^*}(K) \subseteq K \cap J_{2^*}(S)$.

Corollary 2.13. J_{2^*} is a complete radical in zerosymmetric nearrings.

Proof. Let K be an ideal of S and $J_{2^*}(K) = K$. By Theorem 2.12, $K = J_{2^*}(K) \subseteq K \cap J_{2^*}(S)$ and that $K \subseteq J_{2^*}(S)$. So J_{2^*} is a complete radical. \square

Let K be an ideal of S. From Theorems 2.8 and 2.12 it follows that $J_{2^*}(K) = K \cap J_{2^*}(S)$. So we have:

Theorem 2.14. J_{2*} is ideal-hereditary in the class of zerosymmetric nearrings.

Corollary 2.15. J_{2^*} is a Kurosh-Amitsur radical in zerosymmetric nearrings.

702 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

We now present a type 2^* , S-group that is not a type3, S-group. This provides a nearring which a 2^* -primitive nearring but not a 3-primitive nearring.

Example 2.16. Let $(\Gamma, +)$ be group of order greater than 2. Consider the nearring $M_0(\Gamma)$. Let $0 \in \Delta$ be a subset of Γ containing no non-zero subgroup of Γ with $|\Delta| \geq 2$. Now, $S := \{s \in M_0(\Gamma) | s(\gamma) = 0 \text{ for all } \gamma \in \Delta\}$ is a subnearring of $M_0(\Gamma)$. S is a zerosymmetric nearring and Γ is an S-group of type 2^{*}. Since $(0 : \Gamma)_S = \{0\}$, S is a 2^{*}-primitive nearring. Clearly, Γ is not a S-group of type 3. It can be easily verified that S is not an equiprime nearring. So, by Lemma 4.1 of [1], S is not a 3-primitive nearring. Moreover, Γ is not an S-group of type 5/2.

Remark 2.17. In Example 2.16, if Γ is a finite group, then, by Theorem 4.46 of [4], S is a simple nearring. This shows that we have simple nearrings which are J_{2*} -semisimple and J_3 -radical nearrings.

Example 2.18. Suppose that (S, +) is a group of order p > 3, where p is a prime number. Let $0 \in A$ be a subset of S with $2 \leq |A| \leq p - 2$. Define a product on S by $s_1.s_2 = s_1$ if $s_2 \notin A$ and $s_1.s_2 = 0$ if $s_2 \in A$, $s_1, s_2 \in S$. S is a zerosymmetric simple nearring. Moreover, S is a type 2, S-group and any type 2, S-group is S-isomorphic to S. So S is a 2-primitive nearring. It is clear that S is not a type 2^* , S-group and that there is no type 2^* , S-group. Hence S is J_2 -semisimple and J_{2^*} -radical nearring. Note that if $A = \{0\}$, then S is a type 5/2, S-group and that S is a simple 5/2-primitive nearring which is a J_{2^*} -radical nearring as S is not an S-group of type 2^* .

Remark 2.19. Note that an S-group type 2^* has the basic characteristics of an S-group of type 3. At the same time, as seen in example 2.16, some natural nearrings are retained as J_{2^*} -semisimple nearrings even though they are J_3 -radical nearrings.

References

- G.L. Booth, N.J. Groenewald, S. Veldsman, A Kurosh-Amitsur prime radical for near-rings, Comm. Algebra, 18, (1990), no. 9, 3111–3122.
- [2] W.M.L. Holcombe, A hereditary radical for near-rings, Studia Sci. Math. Hungar., 17, (1982), 453–456.
- [3] K. Kaarli, *Radicals in near-rings*, Tartu Rikkl. Ul. Toitmetised, 390, (1976), 134–171 (in Russian).

- [4] G. Pilz, Near-rings, revised ed., North-Holland, Amsterdam, 1983.
- [5] R. Srinivasa Rao, K. Siva Prasad, A kurosh-Amitsur left Jacobson radical for right near-rings, Bull. Korean Math. Soc., 45, (2008), no. 3, 457–466.
- [6] S. Veldsman, On the non-hereditariness of radical and semisimple classes of near-rings, Studia Sci. Math. Hungar., 24, (1989), 315–323.