On a Radical of Nearrings Which is Hereditary

Kilaru J. Lakshminarayana ${ }^{1}$, V.B.V.N. Prasad ${ }^{2}$, Srinivasa Rao Ravi ${ }^{3}$, A.V. Ramakrishna ${ }^{4}$

${ }^{1}$ Research Scholar
Department of Engineering Mathematics
Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502
Guntur (Dist.), Andhra Pradesh, India
${ }^{2}$ Department of Engineering Mathematics
Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502
Guntur (Dist.), Andhra Pradesh, India
${ }^{3}$ Department of Mathematics
University College of Sciences,Acharya Nagarjuna University
Nagarjuna Nagar-522510
Guntur (Dist.), Andhra Pradesh, India
${ }^{4}$ Department of Mathematics
R.V.R and J.C College of Engineering,Chowdavaram-522019

Guntur (Dist.),Andhra Pradesh, India
email: 2002511005@kluniversity.in, vbvnprasad@kluniversity.in, dr_rsrao@yahoo.com, amathi7@gmail.com
(Received December 1, 2023, Accepted January 8, 2024, Published February 12, 2024)

Abstract

We introduce and study properties of a radical in near-rings which is a generalization of the Jacobson radical of rings. Moreover, we proved that this radical is hereditary. Furthermore, we compare this radical with the existing Jacobson type radicals of near-rings.

Key words and phrases: near-ring, S-group, S-group of type-2*, $J_{2^{*}}$ radical, KA-radical.
AMS (MOS) Subject Classifications: 16Y30.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

698 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

1 Introduction

Nearrings are right nearrings. Jacobson radicals of nearrings J_{2} and J_{3} are Kurosh-Amitsur radicals in zerosymmmetric nearrings and are also idealhereditary in the same class ([3], [2]). Moreover, J_{2} fails to be KuroshAmitsur in nearrings. It is not known whether J_{3} is Kurosh-Amotsur in nearrings ([6]).
In this paper, we introduce a (left) Jacobson radical $J_{2^{*}}$ in nearrings and proved that $J_{2^{*}}$ is ideal-hereditary in zerosymmetric nearrings. Also, for a nearring $S, J_{2}(S) \subseteq J_{2^{*}}(S) \subseteq J_{3}(S)$. It is known that for a nearring S, $J_{2}(S) \subseteq J_{5 / 2}(S) \subseteq J_{3}(S)([5])$. It is established that the radicals $J_{5 / 2}, J_{2^{*}}$ are independent. Even though an S-group of type 2^{*} has the basic characteristics of an S-group of type 3 , some natural nearrings are presented which could be retained as $J_{2^{*}}$-semisimple nearrings even though they are J_{3}-radical nearrings.
In this paper, S stands for a right nearring and S_{0} is the zerosymmetric part of S. A group $(\Gamma,+)$ is a (left) S-group if there is mapping $(s, \gamma) \rightarrow s \gamma$ of $S \times \Gamma$ into Γ such that:
(i) $(s+t) \gamma=s \gamma+t \gamma$;
(ii) $(s t) \gamma=s(t \gamma)$ for all $s, t \in S, \gamma \in \Gamma$.

Consider an S-group Γ. A normal subgroup Δ of $(\Gamma,+)$ is an ideal of the S-group Γ if $s(\gamma+\delta)-s \gamma \in \Delta$ for all $s \in S, \gamma \in \Gamma, \delta \in \Delta$. Also a subgroup Δ of $(\Gamma,+)$ is an S-subgroup of the S-group Γ if $s \delta \in \Delta$ for all $s \in S, \delta \in \Delta$. $\gamma \in \Gamma$ is a generator of the S-group Γ if $S \gamma=\Gamma$. S-group Γ is monogenic if it has a generator. An S-group Γ is S-simple if it has no S-subgroups except $S 0$ and Γ.
A monogenic S-group Γ with $\Gamma \neq\{0\}$ is type 2 if Γ is S_{0}-simple.
Γ is of type $5 / 2$ if it of type 2 and $S \gamma=\Gamma$ for all $0 \neq \gamma \in \Gamma$ ([5]).
An S-group Γ is of type3 if it of type 2 and $\gamma_{1}, \gamma_{2} \in \Gamma$ and $s \gamma_{1}=s \gamma_{2}$ for all $s \in S$ implies $\gamma_{1}=\gamma_{2}$.
Note that an S-group of type 3 is of type- $5 / 2$ and an S-group of type- $5 / 2$ is of type 2 .
A mapping ϱ on nearrings such that $\varrho(S)$ is an ideal of S for all nearrings S is an ideal-mapping.
A Hoehnke radical (H-radical) ϱ is an ideal-mapping satisfying:
(i) S is a nearring and t is a homomorphism of S implies $t(\varrho(S)) \subseteq \varrho(t(S))$;
(ii) S is a nearring implies $\varrho(S / \varrho(S))=\{0\}$.

A H-radical ϱ satisfying, $\varrho(\varrho(S))=\varrho(S)$ for all nearrings S, is called idempotent.
A H-radical ϱ satisfying, $\varrho(K)=K$ implies $K \subseteq \varrho(S)$ for all ideals K of a nearring S, is called complete.
A complete, idempotent H-radical is a Kurosh-Amitsur radical.
A H-radical ϱ is ideal-hereditary if S is a nearring and J is an ideal of S implies $\varrho(J)=J \cap \varrho(S)$.

$2 S$-groups of type 2^{*} and the $J_{2^{*}}$ radical

In this section, we only consider zerosymmetric nearring. S denotes a zerosymmetric nearring and Γ a (left) S-group.
Consider Γ, which is an S-group of type 2 . For $\gamma \in \Gamma, S \gamma$ is an S-subgroup of Γ. So either $S \gamma=\{0\}$ or Γ. We define $\Gamma^{0}:=\{\gamma \in \Gamma \mid S \gamma=\{0\}\}$ and $\Gamma^{1}:=\{\gamma \in \Gamma \mid S \gamma=\Gamma\}$. We have $\Gamma=\Gamma^{0} \cup \Gamma^{1}$ and $\Gamma^{0} \cap \Gamma^{1}=\emptyset$. Also, Γ^{0} does not contain a subgroup of Γ as Γ is an S-group of type 2 .

Definition 2.1. Let Γ be a type-2, S-group. Then Γ is a type 2^{*}, S-group if $\gamma_{1}, \gamma_{2} \in \Gamma^{1}$ and $s \gamma_{1}=s \gamma_{2}$ for all $s \in S$ implies $\gamma_{1}=\gamma_{2}$.

Lemma 2.2. Suppose that K is an ideal of S and Γ is a type 2^{*}, K-group. Then Γ is a type $2^{*}, S$-group.

Proof. K is an ideal of S and Γ is a type $2^{*}, K$-group. So Γ is a type 2, K-group and it has a generator γ_{0}. It is clear that $h: K \rightarrow \Gamma$ defined by $h(k)=k \gamma_{0}, k \in K$, is a K-epimorphism with kernel $M:=\left(0: \gamma_{0}\right)_{K}$. So K / M is K-isomorphic to Γ. Now, K / M is a type $2, K$-group and by Theorem 3.34 of [4], K / M is a type $2, S$-group, where $s(k+M)=s k+M$. From the proof of the theorem, for $x+M \in K / M, S(x+M)=M$ implies $K(x+M)=M$. So, for $x+M \in K / M, K(x+M)=M$ if and only if $S(x+M)=M$ and hence $x+M$ is a generator of the K-group K / M if and only if it act as a generator of S-group K / M. Let $x_{1}+M, x_{2}+M$ be generators of the S-group K / M with $t\left(x_{1}+M\right)=t\left(x_{2}+M\right)$ for all $t \in S$. Now $x_{1}+M, x_{2}+M$ are generators of the K-group K / M and $p\left(x_{1}+M\right)=p\left(x_{2}+M\right)$ for all $p \in K$. Since K / M is a type $2^{*}, K$-group, $x_{1}+M=x_{2}+M$. Therefore, K / M is a type $2^{*}, S$-group. Hence Γ is a type $2^{*}, S$-group.

Remark 2.3. In Lemma 2.2, g given by $g(p+M)=p \gamma_{0}$ is a K-isomorphism from K / M onto Γ and K / M is an S-group with $s(k+M)=s k+M, s \in S$.

700 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

Let $\gamma \in \Gamma$. We have $\gamma=k \gamma_{0}$, for some $k \in K$. Define $s \gamma=s\left(k \gamma_{0}\right)=$ $s(g(k+M)):=g(s k+M)$. Since g is a K-isomorphism, this action of S on Γ makes Γ an S-group. Moreover g is an S-isomorphism of K / M onto Γ. Since K / M is a type 2^{*}, S-group, Γ is a type 2^{*}, S-group. In addition, the restricted action of S to K on Γ is same as the existing one of K on Γ.

Definition 2.4. Let S / M be a type 2^{*}, S-group, M is a modular left ideal of S. Then M is called a 2^{*}-modular left ideal of S.

Definition 2.5. An ideal K of S is 2^{*}-primitive if $K=(0: \Gamma):=\{s \in S \mid$ $s \gamma=\{0\}\}$ for some S-group Γ of type $2^{*} . S$ is a 2^{*}-primitive nearring if the zero ideal of S is 2^{*}-primitive.

Definition 2.6. The (left) Jacobson radical of type 2^{*} of S is the intersection of all 2^{*}-primitive ideals of S. It is denoted by $J_{2^{*}}(S)$.

Remark 2.7. $J_{2^{*}}(S)=\cap\left\{Q \mid Q\right.$ is a 2^{*} primitive ideal of $\left.S\right\}=\cap\{(0: \Gamma) \mid \Gamma$ is an S-group of type2* $\}=\cap\left\{M \mid M\right.$ is a 2^{*}-modular left ideal of $\left.S\right\}$.

Theorem 2.8. $\quad J_{2^{*}}(S) \cap K \subseteq J_{2^{*}}(K)$, for any ideal K of S.
Proof. We have that K is an ideal of S. If there is no K-group of type 2^{*}, then $J_{2^{*}}(S) \cap K \subseteq K=J_{2^{*}}(K)$. Suppose that Γ is a K-group of type 2^{*}. By Lemma 2.2, Γ is a type $2^{*}, S$-group, with $(0: \Gamma)_{S} \cap K=(0: \Gamma)_{K}$. Therefore, $J_{2^{*}}(S) \cap K \subseteq J_{2^{*}}(K)$.

Remark 2.9. $J_{2^{*}}$ is the H-radical in zerosymmetric nearrings determined by the class of all 2^{*}-primitive nearrings.

Corollary 2.10. $J_{2^{*}}$ is an idempotent radical in zerosymmetric nearrings.
Proof. Let $K:=J_{2^{*}}(S)$. By Theorem 2.8, $J_{2^{*}}(S)=J_{2^{*}}(S) \cap J_{2^{*}}(S) \subseteq$ $J_{2^{*}}\left(J_{2^{*}}(S)\right)$. Obviously, $J_{2^{*}}\left(J_{2^{*}}(S)\right) \subseteq J_{2^{*}}(S)$. Therefore, $J_{2^{*}}\left(J_{2^{*}}(S)\right)=$ $J_{2^{*}}(S)$ and hence $J_{2^{*}}$ is an idempotent radical.

Lemma 2.11. Suppose that K is an ideal of S and Γ is an S-group of type 2^{*} with $K \Gamma \neq\{0\}$. Then Γ is a K-group of type 2^{*}.

Proof. We have that K is an ideal of S and Γ is a type $2^{*}, S$-group and $K \Gamma \neq\{0\}$. Let $\Delta \neq\{0\}$ be a K-subgroup of Γ. We have $K \Delta \subseteq \Delta$. Suppose that $K \Delta=\{0\}$. Now, $S \Delta \neq\{0\}$. We get $\delta \in \Delta$ such that $S \delta \neq\{0\}$. So $S \delta=\Gamma$. Now, $K \Gamma=K(S \delta)=(K S) \delta \subseteq K \delta=\{0\}$, a contradiction. So $K \Delta \neq\{0\}$. Hence $\delta_{0} \in \Delta$ such that $K \delta_{0} \neq\{0\}$. Since $S\left(K \delta_{0}\right)=(S K) \delta_{0} \subseteq$
$K \delta_{0}, K \delta_{0}=\Gamma$ and $\Delta=\Gamma$. Therefore, Γ is a K-group of type 2 . Let $\delta_{1}, \delta_{2} \in \Gamma$ and $K \delta_{1}=\Gamma=K \delta_{2}$. It is clear that $S \delta_{1}=\Gamma=S \delta_{2}$. Suppose that $k \delta_{1}=k \delta_{2}$ for all $k \in K$. We claim that $\left(0: \delta_{1}\right)_{S}$ and $\left(0: \delta_{2}\right)_{S}$ are equal. On the contrary suppose that are different. Since $S /\left(0: \delta_{i}\right)_{S}$ is S-isomorphic to Γ, $i=1,2$, we have $S=\left(0: \delta_{2}\right)_{S}+\left(0: \delta_{1}\right)_{S}$. We get $e_{1}, e_{2} \in K$ such that $e_{1} \delta_{1}=\delta_{1}$ and $e_{2} \delta_{1}=\delta_{2}$. Now, $K e_{1}+\left(0: \delta_{1}\right)_{K}=K=K e_{2} e_{1}+\left(0: \delta_{1}\right)_{K}$. Let $c \in K \subseteq S=\left(0: \delta_{1}\right)_{S}+\left(0: \delta_{2}\right)_{S}$. Now, $c=a+b, a \in\left(0: \delta_{1}\right)_{S}, b \in\left(0: \delta_{2}\right)_{S}$. Let $x \in K . x c=x(a+b)=(x(a+b)-x b)+x b \in\left(\left(0: \delta_{1}\right)_{S} \cap K\right)+((0:$ $\left.\left.\delta_{2}\right)_{S} \cap K\right)=\left(0: \delta_{1}\right)_{K}$ as $k \delta_{1}=k \delta_{2}$, for all $k \in K$. Therefore, $K^{2} \subseteq\left(0: \delta_{1}\right)_{K}$. We have $e_{1}=y e_{1}+d, y \in K, d \in\left(0: \delta_{1}\right)_{K}$ as $K=K e_{1}+\left(0: \delta_{1}\right)_{K}$. Also, $x e_{1}=x\left(y e_{1}+d\right)=\left(x\left(y e_{1}+d\right)-x y e_{1}\right)+x y e_{1} \in\left(0: \delta_{1}\right)_{K}+\left(0: \delta_{1}\right)_{K}=\left(0: \delta_{1}\right)_{K}$, as $K^{2} \subseteq\left(0: \delta_{1}\right)_{K}$. Therefore, $K=K e_{1}+\left(0: \delta_{1}\right)_{K} \subseteq\left(0: \delta_{1}\right)_{K}+\left(0: \delta_{1}\right)_{K}=$ $\left(0: \delta_{1}\right)_{K}$, a contradiction. So $\left(0: \delta_{1}\right)_{S}$ and $\left(0: \delta_{2}\right)_{S}$ are equal. Let $s \in S$. Now, $s-s e_{1} \in\left(0: \delta_{2}\right)_{S}$. So $s \delta_{2}=\left(s e_{1}\right) \delta_{2}$. Moreover, $\left(s e_{1}\right) \delta_{1}=\left(s e_{1}\right) \delta_{2}$. For all $s \in S, s \delta_{1}=\left(s e_{1}\right) \delta_{1}=\left(s e_{1}\right) \delta_{2}=s \delta_{2}$. Therefore, $\delta_{1}=\delta_{2}$ and hence Γ is a type $2^{*} K$-group.

Theorem 2.12. If K is an ideal of S, then $J_{2^{*}}(K) \subseteq K \cap J_{2^{*}}(S)$.
Proof. We have that K is an ideal of S. Suppose there is no S-group of type 2^{*}. Clearly, $J_{2^{*}}(S)=S$ and $J_{2^{*}}(K) \subseteq K \cap J_{2^{*}}(S)$. Let Γ be an S-group of type 2*. If $K \subseteq(0: \Gamma)_{S}$, then $K=K \cap(0: \Gamma)_{S}$. So assume that $K \nsubseteq(0$: $\Gamma)_{S}$. By Lemma 2.11, Γ is a type $2^{*}, K$-group and $K \cap(0: \Gamma)_{S}=(0: \Gamma)_{K}$. Therefore, $J_{2^{*}}(K) \subseteq K \cap J_{2^{*}}(S)$.

Corollary 2.13. $J_{2^{*}}$ is a complete radical in zerosymmetric nearrings.
Proof. Let K be an ideal of S and $J_{2^{*}}(K)=K$. By Theorem 2.12, $K=$ $J_{2^{*}}(K) \subseteq K \cap J_{2^{*}}(S)$ and that $K \subseteq J_{2^{*}}(S)$. So $J_{2^{*}}$ is a complete radical.

Let K be an ideal of S. From Theorems 2.8 and 2.12 it follows that $J_{2^{*}}(K)=K \cap J_{2^{*}}(S)$. So we have:

Theorem 2.14. $J_{2^{*}}$ is ideal-hereditary in the class of zerosymmetric nearrings.

Corollary 2.15. $J_{2^{*}}$ is a Kurosh-Amitsur radical in zerosymmetric nearrings.

702 K.J. Lakshminarayana, V.B.V.N. Prasad, S.R. Ravi, A.V. Ramakrishna

We now present a type $2^{*}, S$-group that is not a type $3, S$-group. This provides a nearring which a 2^{*}-primitive nearring but not a 3 -primitive nearring.
Example 2.16. Let $(\Gamma,+)$ be group of order greater than 2. Consider the nearring $M_{0}(\Gamma)$. Let $0 \in \Delta$ be a subset of Γ containing no non-zero subgroup of Γ with $|\Delta| \geq 2$. Now, $S:=\left\{s \in M_{0}(\Gamma) \mid s(\gamma)=0\right.$ for all $\left.\gamma \in \Delta\right\}$ is a subnearring of $M_{0}(\Gamma)$. S is a zerosymmetric nearring and Γ is an S-group of type 2^{*}. Since $(0: \Gamma)_{S}=\{0\}, S$ is a 2^{*}-primitive nearring. Clearly, Γ is not a S-group of type 3. It can be easily verified that S is not an equiprime nearring. So, by Lemma 4.1 of [1], S is not a 3-primitive nearring. Moreover, Γ is not an S-group of type 5/2.

Remark 2.17. In Example 2.16, if Γ is a finite group, then, by Theorem 4.46 of [4], S is a simple nearring. This shows that we have simple nearrings which are $J_{2^{*}}$-semisimple and J_{3}-radical nearrings.

Example 2.18. Suppose that $(S,+)$ is a group of order $p>3$, where p is a prime number. Let $0 \in A$ be a subset of S with $2 \leq|A| \leq p-2$. Define a product on S by $s_{1} \cdot s_{2}=s_{1}$ if $s_{2} \notin A$ and $s_{1} \cdot s_{2}=0$ if $s_{2} \in A, s_{1}, s_{2} \in S . S$ is a zerosymmetric simple nearring. Moreover, S is a type $2, S$-group and any type 2, S-group is S-isomorphic to S. So S is a 2-primitive nearring. It is clear that S is not a type $2^{*}, S$-group and that there is no type $2^{*}, S$-group. Hence S is J_{2}-semisimple and $J_{2^{*}}$-radical nearring. Note that if $A=\{0\}$, then S is a type 5/2, S-group and that S is a simple 5/2-primitive nearring which is a $J_{2^{*}}$-radical nearring as S is not an S-group of type 2^{*}.

Remark 2.19. Note that an S-group type 2^{*} has the basic characteristics of an S-group of type 3 . At the same time, as seen in example 2.16, some natural nearrings are retained as $J_{2^{*}}$-semisimple nearrings even though they are J_{3}-radical nearrings.

References

[1] G.L. Booth, N.J. Groenewald, S. Veldsman, A Kurosh-Amitsur prime radical for near-rings, Comm. Algebra, 18, (1990), no. 9, 3111-3122.
[2] W.M.L. Holcombe, A hereditary radical for near-rings, Studia Sci. Math. Hungar., 17, (1982), 453-456.
[3] K. Kaarli, Radicals in near-rings, Tartu Rikkl. Ul. Toitmetised, 390, (1976), 134-171 (in Russian).
[4] G. Pilz, Near-rings, revised ed., North-Holland, Amsterdam, 1983.
[5] R. Srinivasa Rao, K. Siva Prasad, A kurosh-Amitsur left Jacobson radical for right near-rings, Bull. Korean Math. Soc., 45, (2008), no. 3, 457-466.
[6] S. Veldsman, On the non-hereditariness of radical and semisimple classes of near-rings, Studia Sci. Math. Hungar., 24, (1989), 315-323.

