

# On the Exponential Diophantine Equation

 $3^x + 121^y = z^2$ 

#### Malavika N., R. Venkatraman

Department of Mathematics,
Faculty of Engineering and Technology
SRM Institute of Science and Technology, Vadapalani Campus
No. 1, Jawaharlal Nehru Salai, Vadapalani,
Chennai-600026, Tamilnadu, India

email: mn8293@srmist.edu.in, venkatrr1@srmist.edu.in

(Received January 3, 2024, Accepted February 10, 2024, Published February 12, 2024)

#### Abstract

In this paper, we show that the Diophantine equation  $3^x + 121^y = z^2$  has precisely two solutions in non-negative integers; namely, (1, 0, 2) and (5, 2, 122).

## 1 Introduction

In recent years, mathematicians have focused on Exponential Diophantine equations, particularly those in the form  $a^x + b^y = z^2$ , where  $(a, b, x, y, z) \in \mathbb{Z}_+$ . In 2012, Sroysang [3] conducted a study on the Diophantine equation  $3^x + 5^y = z^2$ , determining that it has the unique solution (1,0,2) within the domain of non-negative integers (x,y,z). In 2013, Rabago [4] conclusively solved two Diophantine equations; namely,  $3^x + 19^y = z^2$  and  $3^x + 91^y = z^2$ , where x, y, and z are non-negative integers by identifying two solutions for each equation; specifically, (1,0,2),(4,1,10) and (1,0,2),(2,1,10), respectively. In 2020, Asthana and Singh [1] tackled the Diophantine equation  $3^x + 117^y = z^2$  revealing precisely four solutions within the set of

**Key words and phrases:** Integer solutions, exponential Diophantine equation.

AMS (MOS) Subject Classifications: 11D61.

The corresponding author is R. Venkatraman.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

non-negative integers: (1,0,2), (3,1,12), (7,1,48), and (7,2,126). In 2023, Nongluk Viriyapong and Chokchai Viriyapong [5] considered the Diophantine equation  $255^x+323^y=z^2$ , proving exactly the two solutions (1,0,16), (1,0,18) for non-negative integers x,y,z. Most approaches employed in tackling these equations have relied on established principles in number theory, including Catalan's conjecture, solved by Mihăilescu [2] in 2004, as well as fundamental concepts such as divisibility, congruence, and unique factorization.

## 2 Prerequisites

In this section, we shall recall the Catalan's Conjecture from 1844, which was subsequently proved by Mihăilescu in 2004.

**Theorem 2.1 (Mihăilescu's Theorem).** Catalan's conjecture is true. That is, the Diophantine equation  $a^x - b^y = 1$  has the unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are integers with  $\min\{a, b, x, y\} > 1$ .

**Lemma 2.2.** [3] The exponential Diophantine equation  $3^x + 1 = z^2$  has a unique solution (1,2) for the non-negative integers x and z.

**Lemma 2.3.** The exponential Diophantine equation  $1 + 121^y = z^2$  has no non-negative integer solutions.

*Proof.* If y=0, then  $z^2=2$  which is a contradiction. Now, we have  $y\geq 1$ . By Catalan's Conjecture, we have y=1. Thus  $z^2=122$ , which is impossible. This completes the proof.

### 3 Main results

**Theorem 3.1.** The exponential Diophantine equation  $3^x + 121^y = z^2$  has precisely two non-negative integer solutions (1,0,2) and (5,2,122).

*Proof.* Let x, y and z be non-negative integers such that  $3^x + 121^y = z^2$ . By Lemma 2.3, we have  $x \ge 1$ . We have three cases for y:

Case I: y is zero. By Lemma 2.2, we have (x, y, z) = (1, 0, 2).

Case II: y is even. Say y = 2k, for some  $k \in \mathbb{N}$ . Then  $3^x = z^2 - 121^y = (z - 121^k)(z + 121^k)$ . Let  $3^u = z - 121^k$  and  $3^{x-u} = z + 121^k$ , x > 2u. As a result, we obtain  $3^u[3^{x-2u} - 1] = 2.121^k$ . For k = 1,  $3^u[3^{x-2u} - 1] = 2.121 = 2.11^2$ . Thus u = 0 and  $3^x = 243 = 3^5$  or x = 5. This indicates that x = 5, y = 2 and z = 122. Therefore, (x, y, z) = (5, 2, 122).

Case III: y is odd. Say y = 2k + 1, for some  $k \in \mathbb{N}$ . We will split this case into two segments.

Part 1: The equation  $3^x + 121^y = z^2$  becomes  $3^x + 121^{2k+1} = z^2$  or  $3^x + 121.121^{2k} = z^2$ . So  $3^x - 3600.121^{2k} = z^2 - 3721.121^{2k} = (z - 61.121^k)(z + 61.121^k)$ .

$$z - 61.121^k = 1 (3.1)$$

$$z + 61.121^k = 3^x - 3600.121^{2k} (3.2)$$

Subtracting Eq. (3.1) from Eq. (3.2), we get  $121^k[3600.121^k + 122] = 3^x - 1$ . When k = 0, we get  $3^x = 3723$  which is not solvable. Thus there are no solutions in this part.

Part 2: Again  $3^x + 121^y = z^2$  becomes  $3^x + 121^{2k+1} = z^2$ . So  $3^x + (2209 - 2088)121^{2k} = z^2$  or  $3^x - 2088.121^{2k} = z^2 - 2209.121^{2k}$ . Hence  $3^x - 2088.121^{2k} = (z - 47.121^k)(z + 47.121^k)$ .

$$z - 47.121^k = 1 (3.3)$$

$$z + 47.121^k = 3^x - 2088.121^{2k} (3.4)$$

Subtracting Eq. (3.3) from Eq. (3.4), we get  $121^k[2088.121^k + 94] = 3^x - 1$ . This yields k = 0 and  $3^x = 2183$  which remains insoluble. Thus there are no solutions in this part.

Corollary 3.2. For the Diophantine equation  $3^x + 121^y = 4u^2$ , where x, y, and u are non-negative integers, the solutions (x, y, u) are precisely given by (1, 0, 1) and (5, 2, 61).

*Proof.* Let x, y, and u be non-negative integers satisfying the equation  $3^x + 121^y = 4u^2$ . Put z = 2u. Substituting this into the equation, we get  $3^x + 121^y = z^2$ . By Theorem 3.1, we have the set of solutions  $(x, y, z) \in \{(1, 0, 2), (5, 2, 122)\}$ . Consequently, u must belong to the set  $\{1, 61\}$ . Therefore, the non-negative integer solutions (x, y, u) for the Diophantine equation  $3^x + 121^y = 4u^2$  are precisely (1, 0, 1) and (5, 2, 61).

Corollary 3.3. No non-negative integer solutions exist for the Diophantine equation  $3^x + 121^y = r^4$ .

*Proof.* Assume that x, y, and r are non-negative integers satisfying the equation  $3^x + 121^y = r^4$ . Put  $z = r^2$ . Therefore,  $3^x + 121^y = z^2$ . By Theorem 3.1,  $(x, y, z) \in \{(1, 0, 2), (5, 2, 122)\}$ . Consequently,  $r^2 = z \in \{2, 122\}$ . Since z represents the square of some integer and 2 and 122 are not squares of

any integer, the Diophantine equation  $3^x + 121^y = r^4$  has no solution in the non-negative integers.

**Corollary 3.4.** (1,0,1) is the unique solution for the Diophantine equation  $3^x + 121^y = 4s^4$ , where x, y, and s are non-negative integers.

*Proof.* Let x, y, and s be non-negative integers satisfying the equation  $3^x + 121^y = 4s^4$ . Put  $z = 2s^2$ . Then  $3^x + 121^y = z^2$ . By Theorem 3.1, (x, y, z) = (1, 0, 2). Consequently,  $2s^2 = 2$  which implies that s = 1. Therefore, (1, 0, 1) is the unique non-negative integer solution for the equation  $3^x + 121^y = 4s^4$ , where x, y, and s are non-negative integers.

#### 4 Conclusion

In this paper, we demonstrated that the Exponential Diophantine equation  $3^x + 121^y = z^2$  has exactly two solutions within the set of non-negative integers. These solutions are (1,0,2) and (5,2,122).

## References

- [1] Asthana Shivangi, Madan Mohan Singh, On the Diophantine equation  $3^x + 117^y = z^2$ , Ganita, **70**, (2020), 43–47.
- [2] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., **572**, (2004), 167–195.
- [3] B. Sroysang, On the Diophantine Equation  $3^x + 5^y = z^2$ , Int. J. Pure and Appl. Math., **81**, no. 4, (2012), 605–608.
- [4] J. F. T. Rabago, On two Diophantine equations  $3^x + 19^y = z^2$  and  $3^x + 91^y = z^2$ , Int. J. of Math. and Scientific Computing, **3**, no. 1, (2013), 28–29.
- [5] Viriyapong Nongluk, Chokchai Viriyapong, On the Diophantine equation  $255^x + 323^y = z^2$ , Int. J. Math. Comput. Sci., **18**, no. 3, (2023), 521-523.