Induced Path Polynomials of the Join and Corona of Graphs

Cerina A. Villarta ${ }^{1}$, Rolito G. Eballe ${ }^{1}$, Rosalio G. Artes Jr. ${ }^{2}$
${ }^{1}$ Central Mindanao University
Bukidnon, Philippines
${ }^{2}$ Mindanao State University
Tawi-Tawi College of Technology and Oceanography Tawi-Tawi, Philippines

email: cerina.villarta@cmu.edu.ph, rgaeballe@cmu.edu.ph, rosalioartes@msutawi-tawi.edu.ph
(Received November 3, 2023, Accepted December 18, 2023,
Published February 12, 2024)

Abstract

In this paper, we establish the induced path polynomials of graphs resulting from the join and corona of two connected graphs.

1 Introduction

Graph polynomials captured a lot of attention in recent years because of their applications in Chemistry, Biology, and Physics [4]. Several discrete and applied mathematicians generated polynomials from graphs. Some interesting work had been done for star polynomials of graphs [1]. In our pioneering work in [5], we introduced the concept of induced path polynomials and showed that the induced path polynomial of a path is a linear combination of an $n^{\text {th }}$ partial sum of a geometric series and its first derivative. Recently, in [2], another graph polynomial has been studied by considering geodetic closures of pairs of vertices in a graph.

Key words and phrases: Induced path, graph polynomial.
AMS (MOS) Subject Classifications: 05C25, 05C30, 05C31.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

An induced path in G is a path induced by a subset of $V(G)$. The induced path polynomial of G is given by $P(G ; x)=\sum_{i=1}^{\rho(G)} p_{i}(G) x^{i}$, where $p_{i}(G)$ is the number of induced paths in G of order i and $\rho(G)$ is the order of a maximum induced path in G.

For graph-theoretic concepts, the readers may refer to [3].

2 Join of Graphs

The following result characterizes the induced paths in graphs resulting from the join of two connected graphs.

Lemma 2.1. Let $S_{G} \subseteq V(G)$ and $S_{H} \subseteq V(H)$. A subset $S=S_{G} \cup S_{H}$ induces a path in $G+H$ if and only if S satisfies one of the following conditions:
(i) S_{G} induces a path in G and $S_{H}=\varnothing$.
(ii) S_{H} induces a path in H and $S_{G}=\varnothing$.
(iii) S_{G} induces a P_{2} in G^{\prime} and S_{H} is a singleton set.
(iv) S_{H} induces a P_{2} in H^{\prime} and S_{G} is a singleton set.
(v) $\left|S_{G}\right|=\left|S_{H}\right|=1$.

Proof: Assume that S induces a path in $G+H$. Suppose that S does not satisfy $(i),(i i),(i i i)$, and $(i v)$. Then S_{G} and S_{H} are nonempty. If $\left\langle S_{G}\right\rangle$ or $\left\langle S_{H}\right\rangle$ contains an edge, then $\langle S\rangle$ contains a triangle. Thus $\left|E\left(\left\langle S_{G}\right\rangle\right)\right|=$ $\left|E\left(\left\langle S_{H}\right\rangle\right)\right|=0$. If $\left|S_{G}\right|=\left|S_{H}\right|=2$, then S induces a C_{4} in $G+H$. Moreover, if $\left|S_{G}\right|>2$ or $\left|S_{H}\right|>2$, then $\langle S\rangle$ contains a star S_{3}. Consequently, $\left|S_{G}\right|=$ $\left|S_{H}\right|=1$. The converse is clear.

The induced path polynomial of the join of two graphs is established in the following theorem.

Theorem 2.2. Let G and H be finite, simple and undirected graphs. Then

$$
\begin{aligned}
P(G+H, x)= & P(G, x)+P(H, x)+|V(G)||V(H)| x^{2} \\
& +\left(|V(H)|\left|E\left(G^{\prime}\right)\right|+|V(G)|\left|E\left(H^{\prime}\right)\right|\right) x^{3}
\end{aligned}
$$

Proof: From Lemma 2.1, for (i), we have $P(G, x)$. For (ii), we have $P(H, x)$. Condition (v) of the above lemma contributes $|V(G)||V(H)| x^{2}$ to the induced path polynomial representation of $G+H$. Moreover, a 2-subset of $V(G)$ induces a P_{2} in G^{\prime} whenever it generates an edge in G^{\prime}. Similarly, a 2subset of $V(H)$ induces a P_{2} in H^{\prime} whenever it generates an edge in H^{\prime}. Thus conditions (iii) and (iv) of Lemma 2.1 contribute $\left(|V(H)|\left|E\left(G^{\prime}\right)\right|+\right.$ $\left.|V(G)|\left|E\left(H^{\prime}\right)\right|\right) x^{3}$ to the induced path polynomial representation of $G+H$. Combining the terms gives the desired result.

Since $F_{n}=K_{1}+P_{n}, W_{n}=K_{1}+C_{n}$, and $K_{1, n}=K_{1}+K_{n}^{\prime}$, the following are direct consequences of Theorem 2.2.

Corollary 2.3. For $n \geq 3$,
(i) $P\left(F_{n}, x\right)=P\left(P_{n}, x\right)+x+n x^{2}+\frac{(n-1)(n-2)}{2} x^{3}$.
(ii) $P\left(W_{n}, x\right)=P\left(C_{n}, x\right)+x+n x^{2}+\frac{n(n-3)}{2} x^{3}$.

3 Corona of Graphs

The following result characterizes the induced paths in graphs resulting from the corona of two connected graphs.

Lemma 3.1. Let $S_{G} \subseteq V(G)$ and for every $u, v \in V(G)$, where $u \neq v$ and let $S_{H_{u}} \subseteq V\left(H_{u}\right)$ and $S_{H_{v}} \subseteq V\left(H_{v}\right)$. A subset $S=S_{G} \cup S_{H_{u}} \cup S_{H_{v}}$ induces a path in $G \circ H$ if and only if S satisfies one of the following conditions:
(i) S_{G} induces a path in G and $|S|=\left|S_{G}\right|$.
(ii) S_{G} induces a path in G and $|S|=\left|S_{G}\right|+1$.
(iii) S_{G} induces a path in G and $\left|S_{H_{u}}\right|=\left|S_{H_{v}}\right|=1$.
(iv) $S_{G}=S_{H_{v}}=\varnothing$ and $S_{H_{u}}$ induces a path in H_{u}.
(v) $\left|S_{G}\right|=1$ and $S_{H_{v}}$ induces a P_{2} in H_{v}^{\prime}.

Proof: Assume that S induces a path in G. Suppose (i), (ii), (iii), and (iv) do not hold. Necessarily, S_{G} must induce a path in G. Note that a vertex in G and an edge in a copy of H constitute a triangle in $G \circ H$. Hence (v) follows. The converse is clear.

Finally, we have the following result on the induced path polynomial of graphs resulting from the corona of two connected graphs.

Theorem 3.2. Let G and H be finite, simple and undirected graphs. Then

$$
\begin{aligned}
P(G \circ H, x)= & P(G, x)+|V(G)| P(H, x) \\
& +|V(G)||V(H)| x^{2}+|V(G)|\left|E\left(H^{\prime}\right)\right| x^{3} \\
& +[x|V(H)|(P(G, x)-|V(G)| x)][2+|V(H)| x] .
\end{aligned}
$$

Proof: By Lemma 3.1, (i) corresponds to $P(G, x)$. For (ii), we have $|V(G)||V(H)| x^{2}$ and $2[P(G, x)-|V(G)| x]|V(H)| x$. The third part of Lemma 3.1 corresponds to $[P(G, x)-|V(G)| x]|V(H)|^{2} x^{2}$. Part (iv) corresponds to $|V(G)| P(H, x)$. Finally, for each edge $a b$ in $H^{\prime},[a, u, b]$ is a P_{3} in $G \circ H$ for every $u \in V(G)$. This gives $|V(G)|\left|E\left(H^{\prime}\right)\right| x^{3}$. Combining gives the desired result.

References

[1] R.G. Artes Jr., N.H.R. Mohammad, A.A. Laja,, N.H.M. Hassan, From Graphs to Polynomial Rings: Star Polynomial Representation of Graphs. Advances and Applications in Discrete Mathematics, 37, (2023), 67-76.
https://doi.org/10.17654/0974165823012
[2] Artes, et al., Geodetic Closure Polynomial of Graphs, International Journal of Mathematics and Computer Science, 19, no. 2, (2024), 439443.
[3] J.A. Bondy,U.S.R. Murty, Graph Theory and Related Topics, Academic Press, New York, 1979.
[4] J. Ellis-Monaghan, J. Merino, Graph Polynomials and Their Applications II: Interrelations and Interpretations, Birkhauser, Boston, (2011).
[5] C.A. Villarta, R.G. Eballe, R.G. Artes Jr., Induced Path Polynomial of Graphs, Advances and Applications in Discrete Mathematics, 39, no. 2, (2023), 183-190.
https://doi.org/10.17654/0974165823045

