International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 757–764

(M (M)

Characterizations of fuzzy Bd-ideals in Bd-algebras

Warud Nakkhasen¹, Sirirat Phimkota¹, Ketkanok Phoemkhuen¹, Aiyared Iampan²

> ¹Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham 44150, Thailand

²Department of Mathematics Faculty of Science University of Phayao Phayao 56000, Thailand

email: warud.n@msu.ac.th, 63010213066@msu.ac.th, 63010213098@msu.ac.th, aiyared.ia@up.ac.th

(Received December 5, 2023, Accepted January 21, 2024, Published February 12, 2024)

Abstract

In 2022, Bantaojai et al. [3] introduced an algebra structure called Bd-algebras. In this paper, we define a new notion called fuzzy Bd-ideals of Bd-algebras and study some of its basic properties. Moreover, we characterize fuzzy Bd-ideals by the different types of their level subsets in Bd-algebras.

1 Introduction

The notion of BCK-algebras was introduced by Iséki and Tanaka [5]. Later, the notion of BCI-algebras was presented by Iséki [4], who showed that the

Key words and phrases: *Bd*-algebra, *Bd*-ideal, fuzzy *Bd*-ideal. AMS (MOS) Subject Classifications: 06F35, 08A72, 46H10. The Corresponding author is Warud Nakkhasen. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net class of BCI-algebras is an extension of BCK-algebras. In 1999, Neggers and Kim [7] presented *d*-algebras as an additional algebraic structure that generalizes the BCK-algebras. They also examined the relationships between *d*-algebras and BCK-algebras. Subsequently, they presented the class of abstract algebras, known as *B*-algebras, [8]. In 2022, some requirements from *B*-algebras and *d*-algebras were combined by Bantaojai et al. [3] to develop a new algebra, known as *Bd*-algebra, which provides some characteristics of *Bd*-ideals and *Bd*-subalgebras of *Bd*-algebras.

The notion of fuzzy sets was first defined by Zadeh [10] as a mapping from a nonempty set X to the unit interval [0, 1]. Then, Jun et al. [6] considered the concepts of fuzzy B-subalgebras and fuzzy normals in B-algebras and characterized fuzzy B-subalgebras in B-algebras. Moreover, Baghini and Saeid [2] introduced the concept of (α, β) -fuzzy B-algebras, as a generalization fuzzy B-subalgebras in B-algebras. Afterwards, fuzzy subalgebras and fuzzy d-ideals in d-algebras were introduced by Akram and Dar [1], who additionally delved into some of their properties. In 2023, the notions of left and right fuzzy derivations of d-ideals of d-algebras were introduced by Oli and Tefera [9] who discussed many characterizations of the left and right fuzzy derivations of d-ideals of d-algebras.

The objective of this research is to apply the notion of fuzzy sets to study the algebraic structure of the Bd-algebras. We introduce the notion of fuzzy Bd-ideals in Bd-algebras and investigate the relationships between fuzzy Bd-ideals and Bd-ideals using their level subsets in Bd-algebras.

2 Preliminaries

A mapping $\mu : X \to [0, 1]$ from a nonempty set X to a unit interval is known as a *fuzzy set* [10]. Let μ and λ be any two fuzzy sets of a nonempty set X. We use the following notation:

- (i) $\mu^{c}(x) = 1 \mu(x)$, for all $x \in X$;
- (ii) $(\mu \cap \lambda)(x) = \min\{\mu(x), \lambda(x)\}$, for all $x \in X$;
- (iii) $(\mu \cup \lambda)(x) = \max\{\mu(x), \lambda(x)\}, \text{ for all } x \in X.$

The characteristic function χ_A of a subset A of a nonempty set X is a fuzzy set of X defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise,} \end{cases}$$

for each $x \in X$.

Let μ be a fuzzy set of a nonempty set X. Then, for every $t \in [0, 1]$, we have (i) the set $U(\mu, t) = \{x \in X \mid \mu(x) \geq t\}$ is called an *upper t-level subset* of μ ; (ii) the set $U^+(\mu, t) = \{x \in X \mid \mu(x) > t\}$ is called an *upper t-strong* level subset of μ ; (iii) the set $L(\mu, t) = \{x \in X \mid \mu(x) \leq t\}$ is called a *lower* t-level subset of μ ; (iv) the set $L^-(\mu, t) = \{x \in X \mid \mu(x) < t\}$ is called a *lower* t-strong level subset of μ .

Definition 2.1. [3] An algebra (X, *, 0) of type (2, 0) is called a Bd-algebra if it satisfies the following axioms, for every $x, y \in X$: (i) x * 0 = x; (ii) if x * y = 0 and y * x = 0, then x = y.

Throughout this paper, unless specified otherwise, we use the symbol X instead of a Bd-algebra (X, *, 0).

Definition 2.2. [3] A nonempty subset I of a Bd-algebra X is said to be a Bd-ideal of X if it satisfies the following conditions: (i) $0 \in I$; (ii) if for any $x, y \in X, x * y \in I$ and $y \in I$, then $x \in I$; (iii) $x * y \in I$, for all $x \in I$ and $y \in X$.

3 Fuzzy *Bd*-ideals of *Bd*-algebras

In this section, we introduce the notion of fuzzy Bd-ideals of Bd-algebras and characterize fuzzy Bd-ideals of Bd-algebras based on some properties of their level subsets.

Definition 3.1. Let X be a Bd-algebra. A fuzzy set μ of X is called a fuzzy Bd-ideal of X if, for every $x, y \in X$, it satisfies the following inequalities

- (*i*) $\mu(0) \ge \mu(x);$
- (*ii*) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\};$
- (iii) $\mu(x * y) \ge \mu(x)$.

Example 3.2. Let $X = \{0, a, b, c\}$. Define the binary operation * on X as follows

*	0	a	b	c
	0		a	a
a	a	$a \\ b$	a	a
b			b	b
c	c	a	a	a

Then (X, *, 0) is a Bd-algebra [3]. Now, we define the fuzzy set μ of X by $\mu(a) \leq \mu(c) \leq \mu(b) \leq \mu(0)$. It turns out that μ is a fuzzy Bd-ideal of X.

Proposition 3.3. If μ and λ are fuzzy Bd-ideals of a Bd-algebra X, then $\mu \cap \lambda$ is also a fuzzy Bd-ideal of X.

Proof. Assume that μ and λ are fuzzy Bd-ideals of a Bd-algebra X. For any $a \in X$, we have $(\mu \cap \lambda)(0) = \min\{\mu(0), \lambda(0)\} \ge \min\{\mu(a), \lambda(a)\} =$ $(\mu \cap \lambda)(a)$. Let $x, y \in X$. Then, we have $(\mu \cap \lambda)(x) = \min\{\mu(x), \lambda(x)\} \ge$ $\min\{\min\{\mu(x * y), \mu(y)\}, \min\{\lambda(x * y), \lambda(y)\}\} = \min\{\min\{\mu(x * y), \lambda(x * y)\}, \min\{\mu(y), \lambda(y)\}\} = \min\{(\mu \cap \lambda)(x * y), (\mu \cap \lambda)(y)\}$. In addition, $(\mu \cap \lambda)(x * y) \min\{\mu(x * y), \lambda(x * y)\} \ge \min\{\mu(x), \lambda(x)\} = (\mu \cap \lambda)(x)$. This shows that $\mu \cap \lambda$ is a fuzzy Bd-ideal of X.

Example 3.4. Let $X = \{0, a, b, c\}$ be a set with the binary operation * on X defined by the following table

It is simple to verify that (X, *, 0) is a Bd-algebra. Next, the fuzzy sets μ and λ of X are defined by

$$\mu(0) = 0.7, \mu(a) = 0.5, \mu(b) = 0.3, \mu(c) = 0.3, \\ \lambda(0) = 0.8, \lambda(a) = 0.4, \lambda(b) = 0.6, \lambda(c) = 0.4.$$

By routine calculations, we have μ and λ are fuzzy Bd-ideals of X. However, $\mu \cup \lambda$ is not a fuzzy Bd-ideal of X because $(\mu \cup \lambda)(c) = 0.4 < 0.5 = \min\{(\mu \cup \lambda)(c * b), (\mu \cup \lambda)(b)\}.$

From Example 3.4, we conclude that the union of fuzzy Bd-ideals of a Bd-algebra X may not be a fuzzy Bd-ideal of X. Next, the proof of the following lemma is straightforward.

Lemma 3.5. Let A be a nonempty subset of a Bd-algebra X. Then, A contains the element 0 of X if and only if χ_A satisfies $\chi_A(0) \ge \chi_A(x)$, for all $x \in X$.

Theorem 3.6. Let X be a Bd-algebra and let A be a nonempty subset of X. Then A is a Bd-ideal of X if and only if χ_A is a fuzzy Bd-ideal of X. Proof. Assume that A is a Bd-ideal of X. Since $0 \in A$, by Lemma 3.5 we have $\chi_A(0) \geq \chi_A(x)$, for all $x \in X$. Let $x, y \in X$. If $x \in A$, then $\chi_A(x) = 1 \geq \min\{\chi_A(x * y), \chi_A(y)\}$. If $x \notin A$, then $x * y \notin A$ or $y \notin A$. This implies that $\chi_A(x) = 0 = \min\{\chi_A(x * y), \chi_A(y)\}$. Next, suppose that $\chi_A(a * b) < \chi_A(a)$, for some $a, b \in X$. Then, $\chi_A(a * b) = 0$ and $\chi_A(a) = 1$; that is, $a * b \notin A$ and $a \in A$. Since A is a Bd-ideal of X, we have $a * b \in A$. This is a contradiction. So $\chi_A(x * y) \geq \chi_A(x)$, for all $x, y \in X$. Therefore, χ_A is a fuzzy Bd-ideal of X.

Conversely, assume that χ_A is a fuzzy Bd-ideal of X. By Lemma 3.5, $0 \in A$. Let $x, y \in X$ be such that $x * y \in A$ and $y \in A$. Then $\chi_A(x * y) = 1$ and $\chi_A(y) = 1$. It turns out that $\chi_A(x) \ge \min\{\chi_A(x * y), \chi_A(y)\} = 1$, and so $\chi_A(x) = 1$. That is, $x \in A$. Now, let $a \in A$ and $b \in X$. Thus, $\chi_A(a * b) \ge \chi_A(a) = 1$. It follows that $\chi_A(a * b) = 1$. Hence, $a * b \in A$. Consequently, A is a Bd-ideal of X.

Theorem 3.7. Let μ be a fuzzy set of a Bd-algebra X. Then μ is a fuzzy Bd-ideal of X if and only if, for every $t \in [0, 1]$, $U(\mu, t) \neq \emptyset$ is a Bd-ideal of X.

Proof. Assume that μ is a fuzzy Bd-ideal of X. Let $t \in [0, 1]$ be such that $U(\mu, t) \neq \emptyset$. For any $a \in U(\mu, t)$, we have $\mu(0) \geq \mu(a) \geq t$. So $0 \in U(\mu, t)$. Next, let $x, y \in X$ be such that $x * y \in U(\mu, t)$ and $y \in U(\mu, t)$. Thus, $\mu(x * y) \geq t$ and $\mu(y) \geq t$. By assumption, we have $\mu(x) \geq \min\{\mu(x*y), \mu(y)\} \geq t$. This implies that $x \in U(\mu, t)$. Now, let $a \in U(\mu, t)$ and $b \in X$. It follows that $\mu(a * b) \geq \mu(a) \geq t$; that is, $a * b \in U(\mu, t)$. This shows that $U(\mu, t)$ is a Bd-ideal of X.

Conversely, assume that, for every $t \in [0, 1]$, $U(\mu, t) \neq \emptyset$ is a Bd-ideal of X. Let $x, y \in X$. We take $\mu(x) = t_1$, for some $t_1 \in [0, 1]$. Then, $x \in U(\mu, t_1)$. It follows that $U(\mu, t_1) \neq \emptyset$. We obtain $U(\mu, t_1)$ is a Bd-ideal of X. Thus $0 \in U(\mu, t_1)$. So, $\mu(0) \ge t_1 = \mu(x)$. Letting $t_2 = \min\{\mu(x * y), \mu(y)\}$, for some $t_2 \in [0, 1]$, $\mu(x * y) \ge t_2$ and $\mu(y) \ge t_2$. We have $x * y, y \in U(\mu, t_2)$. By assumption, we get $x \in U(\mu, t_2)$. Then $\mu(x) \ge t_2 = \min\{\mu(x * y), \mu(y)\}$. Next, choose $\mu(x) = t_3$, for some $t_3 \in [0, 1]$. Thus, $x \in U(\mu, t_3)$. Therefore, $\mu(x * y) \ge t_3 = \mu(x)$. Consequently, μ is a fuzzy Bd-ideal of X.

Theorem 3.8. Let μ be a fuzzy set of a Bd-algebra X. Then, μ is a fuzzy Bd-ideal of X if and only if, for every $t \in [0, 1]$, $U^+(\mu, t) \neq \emptyset$ is a Bd-ideal of X.

Proof. Assume that μ is a fuzzy *Bd*-ideal of *X*. Let $t \in [0, 1]$ be such that $U^+(\mu, t) \neq \emptyset$ and let $w \in U^+(\mu, t)$. Then, $\mu(w) > t$. So, $\mu(0) \ge \mu(w) > t$.

Thus, $0 \in U^+(\mu, t)$. Next, let $x, y \in X$ be such that $x * y \in U^+(\mu, t)$ and $y \in U^+(\mu, t)$. Then, $\mu(x * y) > t$ and $\mu(y) > t$. By the hypothesis, we have $\mu(x) \geq \min\{\mu(x * y), \mu(y)\} > t$ which implies that $x \in U^+(\mu, t)$. Now, let $a \in U^+(\mu, t)$ and $b \in X$. We obtain $\mu(a * b) \geq \mu(a) > t$. This means that $a * b \in U^+(\mu, t)$. Hence, $U^+(\mu, t)$ is a *Bd*-ideal of *X*.

Conversely, for every $t \in [0, 1]$, $U^+(\mu, t) \neq \emptyset$ is a *Bd*-ideal of *X*. Let $x, y \in X$. Suppose that $\mu(0) < \mu(x)$. Then, $x \in U^+(\mu, \mu(0))$. By assumption, we have $U^+(\mu, \mu(0))$ is a *Bd*-ideal of *X*. Thus, $0 \in U^+(\mu, \mu(0))$. So, $\mu(0) > \mu(0)$, which is a contradiction. Therefore, $\mu(0) \geq \mu(x)$. Now, if $\mu(x) < \min\{\mu(x * y), \mu(y)\}$, then $\mu(x * y) > \mu(x)$ and $\mu(y) > \mu(x)$. It turns out that $x * y, y \in U^+(\mu, \mu(x))$. So, $U^+(\mu, \mu(x))$ is a *Bd*-ideal of *X*. Also, $x \in U^+(\mu, \mu(x))$. It follows that $\mu(x) > \mu(x)$, which is a contradiction. Hence, $\mu(x) \geq \min\{\mu(x * y), \mu(y)\}$. Similarly, suppose that $\mu(x * y) < \mu(x)$. Thus, $x \in U^+(\mu, \mu(x * y))$. By the given assumption, we get $x * y \in U^+(\mu, \mu(x * y))$. Then, $\mu(x * y) > \mu(x * y)$. This is a contradiction. Hence, $\mu(x * y) \geq \mu(x)$. Therefore, μ is a fuzzy *Bd*-ideal of *X*.

Theorem 3.9. Let μ be a fuzzy set of a Bd-algebra X. Then, μ^c is a fuzzy Bd-ideal of X if and only if, for every $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$ is a Bd-ideal of X.

Proof. Assume that μ^c is a fuzzy Bd-ideal of X. Let $t \in [0,1]$ be such that $L(\mu,t) \neq \emptyset$ and let $w \in L(\mu,t)$. Then, $\mu(w) \leq t$. Since $\mu^c(0) \geq \mu^c(w)$, we have $1 - \mu(0) \geq 1 - \mu(w)$. Also, $\mu(0) \leq \mu(w) \leq t$. Thus, $0 \in L(\mu,t)$. Next, let $x * y \in L(\mu,t)$ and $y \in L(\mu,t)$. Then, $\mu(x * y) \leq t$ and $\mu(y) \leq t$. By the hypothesis, we have $\mu^c(x) \geq \min\{\mu^c(x * y), \mu^c(y)\}$, which implies that $1 - \mu(x) \geq \min\{1 - \mu(x * y), 1 - \mu(y)\} = 1 - \max\{\mu(x * y), \mu(y)\}$. We see that $\mu(x) \leq \max\{\mu(x * y), \mu(y)\} \leq t$. So $x \in L(\mu, t)$. Finally, let $a \in L(\mu, t)$ and $b \in X$. It follows that $\mu^c(a * b) \geq \mu^c(a)$. As a result, $1 - \mu(a * b) \geq 1 - \mu(a)$. This shows that $\mu(a * b) \leq \mu(a) \leq t$. Hence, $a * b \in L(\mu, t)$. Therefore, $L(\mu, t)$ is a Bd-ideal of X.

Conversely, assume that, for every $t \in [0,1]$, $L(\mu,t) \neq \emptyset$ is a *Bd*-ideal of *X*. Let $x, y \in X$. We take $\mu(x) = t_1$, for some $t_1 \in [0,1]$. Then, $x \in L(\mu,t_1)$. So, $L(\mu,t_1)$ is a *Bd*-ideal of *X*. It follows that $0 \in L(\mu,t_1)$; that is, $\mu(0) \leq t_1 = \mu(x)$. Thus, $\mu^c(0) = 1 - \mu(0) \geq 1 - \mu(x) = \mu^c(x)$. Next, we choose $t_2 = \max\{\mu(x * y), \mu(y)\}$, for some $t_2 \in [0,1]$. It follows that $\mu(x * y) \leq t_2$ and $\mu(y) \leq t_2$ which implies that $x * y \in L(\mu,t_2)$ and $y \in L(\mu,t_2)$. By the given assumption, we have $x \in L(\mu,t_2)$; that is, $\mu(x) \leq$ $t_2 = \max\{\mu(x*y), \mu(y)\}$. We get $\mu^c(x) = 1 - \mu(x) \geq 1 - \max\{\mu(x*y), \mu(y)\} =$ $\min\{1 - \mu(x * y), 1 - \mu(y)\} = \min\{\mu^c(x * y), \mu^c(y)\}$. Now, let $\mu(x) = t_3$, for Characterizations of fuzzy Bd-ideals in Bd-algebras

some $t_3 \in [0, 1]$. Then $x \in L(\mu, t_3)$. By the given hypothesis, we have $L(\mu, t_3)$ is a *Bd*-ideal of *X*. So, $x * y \in L(\mu, t_3)$. Thus, $\mu(x * y) \leq t_3 = \mu(x)$. Hence, $\mu^c(x * y) = 1 - \mu(x * y) \geq 1 - \mu(x) = \mu^c(x)$. Consequently, μ^c is a fuzzy *Bd*-ideal of *X*.

Theorem 3.10. Let μ be a fuzzy set of a Bd-algebra X. Then, μ^c is a fuzzy Bd-ideal of X if and only if, for every $t \in [0, 1]$, $L^-(\mu, t) \neq \emptyset$ is a Bd-ideal of X.

Proof. Assume that μ^c is a fuzzy Bd-ideal of X. Let $t \in [0,1]$ be such that $L^-(\mu,t) \neq \emptyset$. For every $x \in L^-(\mu,t)$, we have $\mu(x) < t$. Then, $1 - \mu(0) = \mu^c(0) \geq \mu^c(x) = 1 - \mu(x)$. So, $\mu(0) \leq \mu(x) < t$. Thus $0 \in L^-(\mu,t)$. Let $x * y \in L^-(\mu,t)$ and $y \in L^-(\mu,t)$. Also, $\mu(x * y) < t$ and $\mu(y) < t$. By the hypothesis, we have $1 - \mu(x) = \mu^c(x) \geq \min\{\mu^c(x * y), \mu^c(y)\} = \min\{1 - \mu(x * y), 1 - \mu(y)\} = 1 - \max\{\mu(x * y), \mu(y)\}$. It turns out that $\mu(x) \leq \max\{\mu(x * y), \mu(y)\} < t$ which implies that $x \in L^-(\mu, t)$. Next, for every $x \in L^-(\mu, t)$ and $y \in X$, we have $1 - \mu(x * y) = \mu^c(x * y) \geq \mu^c(x) = 1 - \mu(x)$. This means that $\mu(x * y) \leq \mu(x) < t$. Hence, $x * y \in L^-(\mu, t)$. Therefore, $L^-(\mu, t)$ is a Bd-ideal of X.

Conversely, assume that, for every $t \in [0, 1]$, $L^{-}(\mu, t) \neq \emptyset$ is a Bd-ideal of X. Let $x, y \in X$. If $\mu^{c}(0) < \mu^{c}(x)$, then $1 - \mu(0) < 1 - \mu(x)$. Also, $\mu(0) > \mu(x)$. Thus, $x \in L^{-}(\mu, \mu(0))$. By assumption, we have $0 \in L^{-}(\mu, \mu(0))$. So, $\mu(0) < \mu(0)$, a contradiction. Hence, $\mu^{c}(0) \geq \mu^{c}(x)$. Suppose that $\mu^{c}(x + y), \mu^{c}(y)$. Then $1 - \mu(x) < \min\{1 - \mu(x + y), 1 - \mu(y)\} = 1 - \max\{\mu(x + y), \mu(y)\}$. We have $\mu(x) > \max\{\mu(x + y), \mu(y)\}$. It follows that $x + y, y \in L^{-}(\mu, \mu(x))$. By the hypothesis, we have $x \in L^{-}(\mu, \mu(x))$; that is, $\mu(x) < \mu(x)$, which is a contradiction. Hence, $\mu^{c}(x) \geq \min\{\mu^{c}(x + y), \mu^{c}(y)\}$. Similarly, suppose that $\mu^{c}(x + y) < \mu^{c}(x)$. Thus, $1 - \mu(x + y) < 1 - \mu(x)$. This implies that $\mu(x + y) > \mu(x)$. So, $x \in L^{-}(\mu, \mu(x + y))$. We obtain $L^{-}(\mu, \mu(x + y))$ is a Bd-ideal of X. This means that $x + y \in L^{-}(\mu, \mu(x + y))$. Then, $\mu(x + y) < \mu(x + y)$, a contradiction. Hence, $\mu^{c}(x + y) \geq \mu^{c}(x)$. Consequently, μ^{c} is a fuzzy Bd-ideal of X.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

 M. Akram, K. H. Dar, On fuzzy *d*-algebras, Punjap University Journal of Mathematics, **37**, (2005), 61–76.

- [2] A. Z. Baghini, A. B. Saeid, Generalized fuzzy B-algebras, Fuzzy Information and Engineering, 40, (2007), 226–233.
- [3] T. Bantaojai, C. Suanoom, J. Phuto, A. Iampan, On Bd-algebras, International Journal of Mathematics and Computer Science, 17, no. 2, (2022), 731–737.
- [4] K. Iséki, On *BCI*-algebras, Math. Seminar Notes, 8, (1980), 125–130.
- [5] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23, (1978), 1–26.
- [6] Y. B. Jun, E. H. Roh, H. S. Kim, On fuzzy B-algebras, Czechoslovak Mathematical Journal, 52, no. 2, (2002), 375–384.
- [7] J. Neggers, H. S. Kim, On *d*-algebras, Math. Slovaca, 49, no. 1, (1999), 9–26.
- [8] J. Neggers, H. S. Kim, On *B*-algebras, Math. Vesnik, 54, (2002), 21–29.
- [9] A. Oli, G. Tefera, Fuzzy derivations of d-ideals of d-algebras and Cartesian product of fuzzy derivation of d-ideals of d-algebras, Applied Artificial Intelligence, 37, no. 1, (2023), e2157938.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control, 8, no. 3, (1965), 338–353.