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Abstract

In 2022, Bantaojai et al. [3] introduced an algebra structure called
Bd-algebras. In this paper, we define a new notion called fuzzy Bd-
ideals of Bd-algebras and study some of its basic properties. Moreover,
we characterize fuzzy Bd-ideals by the different types of their level
subsets in Bd-algebras.

1 Introduction

The notion of BCK-algebras was introduced by Iséki and Tanaka [5]. Later,
the notion of BCI-algebras was presented by Iséki [4], who showed that the
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class of BCI-algebras is an extension of BCK-algebras. In 1999, Neggers and
Kim [7] presented d-algebras as an additional algebraic structure that gen-
eralizes the BCK-algebras. They also examined the relationships between
d-algebras and BCK-algebras. Subsequently, they presented the class of ab-
stract algebras, known as B-algebras, [8]. In 2022, some requirements from
B-algebras and d-algebras were combined by Bantaojai et al. [3] to develop
a new algebra, known as Bd-algebra, which provides some characteristics of
Bd-ideals and Bd-subalgebras of Bd-algebras.

The notion of fuzzy sets was first defined by Zadeh [10] as a mapping
from a nonempty set X to the unit interval [0, 1]. Then, Jun et al. [6] con-
sidered the concepts of fuzzy B-subalgebras and fuzzy normals in B-algebras
and characterized fuzzy B-subalgebras in B-algebras. Moreover, Baghini and
Saeid [2] introduced the concept of (α, β)-fuzzy B-algebras, as a generaliza-
tion fuzzy B-subalgebras in B-algebras. Afterwards, fuzzy subalgebras and
fuzzy d-ideals in d-algebras were introduced by Akram and Dar [1], who ad-
ditionally delved into some of their properties. In 2023, the notions of left
and right fuzzy derivations of d-ideals of d-algebras were introduced by Oli
and Tefera [9] who discussed many characterizations of the left and right
fuzzy derivations of d-ideals of d-algebras.

The objective of this research is to apply the notion of fuzzy sets to
study the algebraic structure of the Bd-algebras. We introduce the notion
of fuzzy Bd-ideals in Bd-algebras and investigate the relationships between
fuzzy Bd-ideals and Bd-ideals using their level subsets in Bd-algebras.

2 Preliminaries

A mapping µ : X → [0, 1] from a nonempty set X to a unit interval is known
as a fuzzy set [10]. Let µ and λ be any two fuzzy sets of a nonempty set X .
We use the following notation:

(i) µc(x) = 1− µ(x), for all x ∈ X ;

(ii) (µ ∩ λ)(x) = min{µ(x), λ(x)}, for all x ∈ X ;

(iii) (µ ∪ λ)(x) = max{µ(x), λ(x)}, for all x ∈ X .

The characteristic function χA of a subset A of a nonempty set X is a
fuzzy set of X defined by

χA(x) =

{

1 if x ∈ A,

0 otherwise,
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for each x ∈ X .
Let µ be a fuzzy set of a nonempty set X . Then, for every t ∈ [0, 1], we

have (i) the set U(µ, t) = {x ∈ X | µ(x) ≥ t} is called an upper t-level subset
of µ; (ii) the set U+(µ, t) = {x ∈ X | µ(x) > t} is called an upper t-strong
level subset of µ; (iii) the set L(µ, t) = {x ∈ X | µ(x) ≤ t} is called a lower
t-level subset of µ; (iv) the set L−(µ, t) = {x ∈ X | µ(x) < t} is called a
lower t-strong level subset of µ.

Definition 2.1. [3] An algebra (X, ∗, 0) of type (2, 0) is called a Bd-algebra
if it satisfies the following axioms, for every x, y ∈ X: (i) x ∗ 0 = x; (ii) if
x ∗ y = 0 and y ∗ x = 0, then x = y.

Throughout this paper, unless specified otherwise, we use the symbol X
instead of a Bd-algebra (X, ∗, 0).

Definition 2.2. [3] A nonempty subset I of a Bd-algebra X is said to be a
Bd-ideal of X if it satisfies the following conditions: (i) 0 ∈ I; (ii) if for any
x, y ∈ X, x ∗ y ∈ I and y ∈ I, then x ∈ I; (iii) x ∗ y ∈ I, for all x ∈ I and
y ∈ X.

3 Fuzzy Bd-ideals of Bd-algebras

In this section, we introduce the notion of fuzzy Bd-ideals of Bd-algebras
and characterize fuzzy Bd-ideals of Bd-algebras based on some properties of
their level subsets.

Definition 3.1. Let X be a Bd-algebra. A fuzzy set µ of X is called a fuzzy
Bd-ideal of X if, for every x, y ∈ X, it satisfies the following inequalities

(i) µ(0) ≥ µ(x);

(ii) µ(x) ≥ min{µ(x ∗ y), µ(y)};

(iii) µ(x ∗ y) ≥ µ(x).

Example 3.2. Let X = {0, a, b, c}. Define the binary operation ∗ on X as
follows

∗ 0 a b c

0 0 a a a

a a a a a

b b b b b

c c a a a
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Then (X, ∗, 0) is a Bd-algebra [3]. Now, we define the fuzzy set µ of X by
µ(a) ≤ µ(c) ≤ µ(b) ≤ µ(0). It turns out that µ is a fuzzy Bd-ideal of X.

Proposition 3.3. If µ and λ are fuzzy Bd-ideals of a Bd-algebra X, then
µ ∩ λ is also a fuzzy Bd-ideal of X.

Proof. Assume that µ and λ are fuzzy Bd-ideals of a Bd-algebra X . For
any a ∈ X , we have (µ ∩ λ)(0) = min{µ(0), λ(0)} ≥ min{µ(a), λ(a)} =
(µ ∩ λ)(a). Let x, y ∈ X . Then, we have (µ ∩ λ)(x) = min{µ(x), λ(x)} ≥
min{min{µ(x ∗ y), µ(y)},min{λ(x ∗ y), λ(y)}} = min{min{µ(x ∗ y), λ(x ∗
y)},min{µ(y), λ(y)}} = min{(µ ∩ λ)(x ∗ y), (µ ∩ λ)(y)}. In addition, (µ ∩
λ)(x ∗ y)min{µ(x ∗ y), λ(x ∗ y)} ≥ min{µ(x), λ(x)} = (µ∩λ)(x). This shows
that µ ∩ λ is a fuzzy Bd-ideal of X .

Example 3.4. Let X = {0, a, b, c} be a set with the binary operation ∗ on
X defined by the following table

∗ 0 a b c

0 0 0 0 0
a a a a a

b b b b b

c c c a a

It is simple to verify that (X, ∗, 0) is a Bd-algebra. Next, the fuzzy sets µ

and λ of X are defined by

µ(0) = 0.7, µ(a) = 0.5, µ(b) = 0.3, µ(c) = 0.3,
λ(0) = 0.8, λ(a) = 0.4, λ(b) = 0.6, λ(c) = 0.4.

By routine calculations, we have µ and λ are fuzzy Bd-ideals of X. However,
µ∪λ is not a fuzzy Bd-ideal of X because (µ∪λ)(c) = 0.4 < 0.5 = min{(µ∪
λ)(c ∗ b), (µ ∪ λ)(b)}.

From Example 3.4, we conclude that the union of fuzzy Bd-ideals of a
Bd-algebra X may not be a fuzzy Bd-ideal of X .
Next, the proof of the following lemma is straightforward.

Lemma 3.5. Let A be a nonempty subset of a Bd-algebra X. Then, A

contains the element 0 of X if and only if χA satisfies χA(0) ≥ χA(x), for
all x ∈ X.

Theorem 3.6. Let X be a Bd-algebra and let A be a nonempty subset of X.
Then A is a Bd-ideal of X if and only if χA is a fuzzy Bd-ideal of X.
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Proof. Assume that A is a Bd-ideal of X . Since 0 ∈ A, by Lemma 3.5
we have χA(0) ≥ χA(x), for all x ∈ X . Let x, y ∈ X . If x ∈ A, then
χA(x) = 1 ≥ min{χA(x ∗ y), χA(y)}. If x 6∈ A, then x ∗ y 6∈ A or y 6∈ A.
This implies that χA(x) = 0 = min{χA(x ∗ y), χA(y)}. Next, suppose that
χA(a ∗ b) < χA(a), for some a, b ∈ X . Then, χA(a ∗ b) = 0 and χA(a) = 1;
that is, a ∗ b 6∈ A and a ∈ A. Since A is a Bd-ideal of X , we have a ∗ b ∈ A.
This is a contradiction. So χA(x ∗ y) ≥ χA(x), for all x, y ∈ X . Therefore,
χA is a fuzzy Bd-ideal of X .

Conversely, assume that χA is a fuzzy Bd-ideal of X . By Lemma 3.5,
0 ∈ A. Let x, y ∈ X be such that x ∗ y ∈ A and y ∈ A. Then χA(x ∗ y) = 1
and χA(y) = 1. It turns out that χA(x) ≥ min{χA(x ∗ y), χA(y)} = 1,
and so χA(x) = 1. That is, x ∈ A. Now, let a ∈ A and b ∈ X . Thus,
χA(a ∗ b) ≥ χA(a) = 1. It follows that χA(a ∗ b) = 1. Hence, a ∗ b ∈ A.
Consequently, A is a Bd-ideal of X .

Theorem 3.7. Let µ be a fuzzy set of a Bd-algebra X. Then µ is a fuzzy
Bd-ideal of X if and only if, for every t ∈ [0, 1], U(µ, t) 6= ∅ is a Bd-ideal of
X.

Proof. Assume that µ is a fuzzy Bd-ideal of X . Let t ∈ [0, 1] be such that
U(µ, t) 6= ∅. For any a ∈ U(µ, t), we have µ(0) ≥ µ(a) ≥ t. So 0 ∈ U(µ, t).
Next, let x, y ∈ X be such that x ∗ y ∈ U(µ, t) and y ∈ U(µ, t). Thus, µ(x ∗
y) ≥ t and µ(y) ≥ t. By assumption, we have µ(x) ≥ min{µ(x∗y), µ(y)} ≥ t.
This implies that x ∈ U(µ, t). Now, let a ∈ U(µ, t) and b ∈ X . It follows
that µ(a ∗ b) ≥ µ(a) ≥ t; that is, a ∗ b ∈ U(µ, t). This shows that U(µ, t) is a
Bd-ideal of X .

Conversely, assume that, for every t ∈ [0, 1], U(µ, t) 6= ∅ is a Bd-ideal of
X . Let x, y ∈ X . We take µ(x) = t1, for some t1 ∈ [0, 1]. Then, x ∈ U(µ, t1).
It follows that U(µ, t1) 6= ∅. We obtain U(µ, t1) is a Bd-ideal of X . Thus
0 ∈ U(µ, t1). So, µ(0) ≥ t1 = µ(x). Letting t2 = min{µ(x ∗ y), µ(y)}, for
some t2 ∈ [0, 1], µ(x ∗ y) ≥ t2 and µ(y) ≥ t2. We have x ∗ y, y ∈ U(µ, t2).
By assumption, we get x ∈ U(µ, t2). Then µ(x) ≥ t2 = min{µ(x ∗ y), µ(y)}.
Next, choose µ(x) = t3, for some t3 ∈ [0, 1]. Thus, x ∈ U(µ, t3). Therefore,
µ(x ∗ y) ≥ t3 = µ(x). Consequently, µ is a fuzzy Bd-ideal of X .

Theorem 3.8. Let µ be a fuzzy set of a Bd-algebra X. Then, µ is a fuzzy
Bd-ideal of X if and only if, for every t ∈ [0, 1], U+(µ, t) 6= ∅ is a Bd-ideal
of X.

Proof. Assume that µ is a fuzzy Bd-ideal of X . Let t ∈ [0, 1] be such that
U+(µ, t) 6= ∅ and let w ∈ U+(µ, t). Then, µ(w) > t. So, µ(0) ≥ µ(w) > t.
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Thus, 0 ∈ U+(µ, t). Next, let x, y ∈ X be such that x ∗ y ∈ U+(µ, t) and
y ∈ U+(µ, t). Then, µ(x ∗ y) > t and µ(y) > t. By the hypothesis, we have
µ(x) ≥ min{µ(x ∗ y), µ(y)} > t which implies that x ∈ U+(µ, t). Now, let
a ∈ U+(µ, t) and b ∈ X . We obtain µ(a ∗ b) ≥ µ(a) > t. This means that
a ∗ b ∈ U+(µ, t). Hence, U+(µ, t) is a Bd-ideal of X .

Conversely, for every t ∈ [0, 1], U+(µ, t) 6= ∅ is a Bd-ideal of X . Let x, y ∈
X . Suppose that µ(0) < µ(x). Then, x ∈ U+(µ, µ(0)). By assumption, we
have U+(µ, µ(0)) is a Bd-ideal of X . Thus, 0 ∈ U+(µ, µ(0)). So, µ(0) >

µ(0), which is a contradiction. Therefore, µ(0) ≥ µ(x). Now, if µ(x) <

min{µ(x ∗ y), µ(y)}, then µ(x ∗ y) > µ(x) and µ(y) > µ(x). It turns out
that x ∗ y, y ∈ U+(µ, µ(x)). So, U+(µ, µ(x)) is a Bd-ideal of X . Also, x ∈
U+(µ, µ(x)). It follows that µ(x) > µ(x), which is a contradiction. Hence,
µ(x) ≥ min{µ(x ∗ y), µ(y)}. Similarly, suppose that µ(x ∗ y) < µ(x). Thus,
x ∈ U+(µ, µ(x∗y)). By the given assumption, we get x∗y ∈ U+(µ, µ(x∗y)).
Then, µ(x ∗ y) > µ(x ∗ y). This is a contradiction. Hence, µ(x ∗ y) ≥ µ(x).
Therefore, µ is a fuzzy Bd-ideal of X .

Theorem 3.9. Let µ be a fuzzy set of a Bd-algebra X. Then, µc is a fuzzy
Bd-ideal of X if and only if, for every t ∈ [0, 1], L(µ, t) 6= ∅ is a Bd-ideal of
X.

Proof. Assume that µc is a fuzzy Bd-ideal of X . Let t ∈ [0, 1] be such that
L(µ, t) 6= ∅ and let w ∈ L(µ, t). Then, µ(w) ≤ t. Since µc(0) ≥ µc(w), we
have 1 − µ(0) ≥ 1 − µ(w). Also, µ(0) ≤ µ(w) ≤ t. Thus, 0 ∈ L(µ, t). Next,
let x ∗ y ∈ L(µ, t) and y ∈ L(µ, t). Then, µ(x ∗ y) ≤ t and µ(y) ≤ t. By
the hypothesis, we have µc(x) ≥ min{µc(x ∗ y), µc(y)}, which implies that
1−µ(x) ≥ min{1−µ(x∗y), 1−µ(y)} = 1−max{µ(x∗y), µ(y)}. We see that
µ(x) ≤ max{µ(x ∗ y), µ(y)} ≤ t. So x ∈ L(µ, t). Finally, let a ∈ L(µ, t) and
b ∈ X . It follows that µc(a ∗ b) ≥ µc(a). As a result, 1− µ(a ∗ b) ≥ 1− µ(a).
This shows that µ(a∗b) ≤ µ(a) ≤ t. Hence, a∗b ∈ L(µ, t). Therefore, L(µ, t)
is a Bd-ideal of X .

Conversely, assume that, for every t ∈ [0, 1], L(µ, t) 6= ∅ is a Bd-ideal
of X . Let x, y ∈ X . We take µ(x) = t1, for some t1 ∈ [0, 1]. Then,
x ∈ L(µ, t1). So, L(µ, t1) is a Bd-ideal of X . It follows that 0 ∈ L(µ, t1);
that is, µ(0) ≤ t1 = µ(x). Thus, µc(0) = 1 − µ(0) ≥ 1 − µ(x) = µc(x).
Next, we choose t2 = max{µ(x ∗ y), µ(y)}, for some t2 ∈ [0, 1]. It follows
that µ(x ∗ y) ≤ t2 and µ(y) ≤ t2 which implies that x ∗ y ∈ L(µ, t2) and
y ∈ L(µ, t2). By the given assumption, we have x ∈ L(µ, t2); that is, µ(x) ≤
t2 = max{µ(x∗y), µ(y)}. We get µc(x) = 1−µ(x) ≥ 1−max{µ(x∗y), µ(y)} =
min{1− µ(x ∗ y), 1− µ(y)} = min{µc(x ∗ y), µc(y)}. Now, let µ(x) = t3, for
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some t3 ∈ [0, 1]. Then x ∈ L(µ, t3). By the given hypothesis, we have L(µ, t3)
is a Bd-ideal of X . So, x ∗ y ∈ L(µ, t3). Thus, µ(x ∗ y) ≤ t3 = µ(x). Hence,
µc(x ∗ y) = 1 − µ(x ∗ y) ≥ 1 − µ(x) = µc(x). Consequently, µc is a fuzzy
Bd-ideal of X .

Theorem 3.10. Let µ be a fuzzy set of a Bd-algebra X. Then, µc is a fuzzy
Bd-ideal of X if and only if, for every t ∈ [0, 1], L−(µ, t) 6= ∅ is a Bd-ideal
of X.

Proof. Assume that µc is a fuzzy Bd-ideal of X . Let t ∈ [0, 1] be such that
L−(µ, t) 6= ∅. For every x ∈ L−(µ, t), we have µ(x) < t. Then, 1 − µ(0) =
µc(0) ≥ µc(x) = 1 − µ(x). So, µ(0) ≤ µ(x) < t. Thus 0 ∈ L−(µ, t). Let
x ∗ y ∈ L−(µ, t) and y ∈ L−(µ, t). Also, µ(x ∗ y) < t and µ(y) < t. By the
hypothesis, we have 1 − µ(x) = µc(x) ≥ min{µc(x ∗ y), µc(y)} = min{1 −
µ(x ∗ y), 1 − µ(y)} = 1 − max{µ(x ∗ y), µ(y)}. It turns out that µ(x) ≤
max{µ(x ∗ y), µ(y)} < t which implies that x ∈ L−(µ, t). Next, for every
x ∈ L−(µ, t) and y ∈ X , we have 1−µ(x∗ y) = µc(x∗ y) ≥ µc(x) = 1−µ(x).
This means that µ(x ∗ y) ≤ µ(x) < t. Hence, x ∗ y ∈ L−(µ, t). Therefore,
L−(µ, t) is a Bd-ideal of X .

Conversely, assume that, for every t ∈ [0, 1], L−(µ, t) 6= ∅ is a Bd-ideal of
X . Let x, y ∈ X . If µc(0) < µc(x), then 1 − µ(0) < 1 − µ(x). Also, µ(0) >
µ(x). Thus, x ∈ L−(µ, µ(0)). By assumption, we have 0 ∈ L−(µ, µ(0)).
So, µ(0) < µ(0), a contradiction. Hence, µc(0) ≥ µc(x). Suppose that
µc(x) < min{µc(x∗y), µc(y)}. Then 1−µ(x) < min{1−µ(x∗y), 1−µ(y)} =
1−max{µ(x∗y), µ(y)}. We have µ(x) > max{µ(x∗y), µ(y)}. It follows that
x ∗ y, y ∈ L−(µ, µ(x))). By the hypothesis, we have x ∈ L−(µ, µ(x)); that is,
µ(x) < µ(x), which is a contradiction. Hence, µc(x) ≥ min{µc(x ∗ y), µc(y)}.
Similarly, suppose that µc(x∗y) < µc(x). Thus, 1−µ(x∗y) < 1−µ(x). This
implies that µ(x∗y) > µ(x). So, x ∈ L−(µ, µ(x∗y)). We obtain L−(µ, µ(x∗y))
is a Bd-ideal of X . This means that x∗y ∈ L−(µ, µ(x∗y)). Then, µ(x∗y) <
µ(x ∗ y), a contradiction. Hence, µc(x ∗ y) ≥ µc(x). Consequently, µc is a
fuzzy Bd-ideal of X .
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