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Abstract

In this paper, we focus on terms with fixed variables count, terms

under which the total numbers of occurrences of variables in each po-

sition are equal. Moreover, we determine conditions for which the set

of terms with fixed variables count is closed under the generalized su-

perposition. Furthermore, we form the partial algebras of such terms

satisfying certain axioms as weak identities.
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1 Introduction and preliminaries

Following [3], we recall that a term of type τ is an expression arising from
variables from an infinite set of alphabet X = {x1, x2, . . .} or a finite set
Xn = {x1, x2, . . . , xn} for a positive integer n and a family {fi | i ∈ I}
of operation symbols for the arity ni for each i in an index set I. By the
definition, an n-ary term of type τ is inductively defined by the following
steps: each variable xi in Xn is a term of type τ and fi(t1, . . . , tni

) is also a
term of type τ if t1, . . . , tni

are already known. The setWτ (Xn) is the smallest
set consisting of n-ary terms of type τ which is closed under finite application
of each operation symbol fi. Moreover, the symbol Wτ (X) denotes the set of
all terms of type τ which means that Wτ (X) =: ∪n≥1Wτ (Xn). In particular,
we say that terms in Wτ (X) are constructed from X . For more backgrounds
of terms, see [2, 5, 7, 9].

In [8], the generalized superposition operation Sn
g was applied to the

set Wτ (X) of all terms of type τ . By the definition, it is an operation
of type (n + 1) inductively defined on Wτ (X) by the following steps: for
t, t1, . . . , tn ∈ Wτ (X)

(1) If t = xi; 1 ≤ i ≤ n, then Sn
g (xi, t1, . . . , tn) := ti.

(2) If t = xi; i > n, then Sn
g (xi, t1, . . . , tn) := xi.

(3) If t = fi(s1, . . . , sni
), then

Sn
g (t, t1, . . . , tn) := fi(S

n
g (s1, t1, . . . , tn), . . . , S

n
g (sni

, t1, . . . , tn)).

As a consequence, the algebra (Wτ (X), Sn
g ) of type (n + 1) was formed.

Puninagool and Leeratanavalee [8] proved that this algebra belongs to the
class of superassociative algebras or Menger algebras, see [4], because Sn

g

satisfies the superassociative law:

(C1) Sn
g (S

n
g (t, t1, . . . , tn), s1, . . . , sn)

= Sn
g (t, S

n
g (t1, s1, . . . , sn), . . . , S

n
g (tn, s1, . . . , sn)).

Moreover, adding a family (xi)i≥1, the superassociative algebra of terms
with infinitely many nullary operations (Wτ (X), Sn

g , (xj)j≥1) of type (n +
1, 0, 0, 0, . . .) was obtained. This algebra satisfies (C1) and the following
three equations:

(C2) Sn
g (xj , s1, . . . , sn) = sj if 1 ≤ j ≤ n,

(C3) Sn
g (xj , s1, . . . , sn) = xj if j > n,
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(C4) Sn
g (t, x1, . . . , xn) = t.

Following [1], recall that an equation s ≈ t is said to be a weak identity in
an algebra A if one side is defined, then another side is also defined and both
sides are equal. Moreover, by a partial superassociative algebra of rank n, we
mean a pair of a nonempty set M and a partial operation ō : Mn+1

⊸→ M
defined on M such that an arbitrary condition ō(a, b1, . . . , bn) for elements
a, b1, . . . , bn in M is defined and ō satisfies the superassociative law as a weak
identity. It is clear that any partial semigroup is a partial superassociative
algebra of rank 1. The partial algebraic structures of terms have been widely
studied in this decade. For example, the partial Menger algebra of linear
terms which are terms under which each variable that appears in a term
occurs only once was introduced by Denecke [3]. Recently, Kumduang and
Leeratanavalee [6] presented the partial algebra of terms with fixed variables
count. To study such terms, one needs the formula for counting the com-
plextity of terms by considering the number of variables that appear in a
term.

In this paper, we apply the generalized superposition to the set of terms
fixing the number of variables and demonstrate the process of computation.
Conditions for which the set of such terms is closed under Sn

g for a posi-
tive integer n are determined. Based on the formula vb(Sn

g (s, t1, . . . , tn)) =
∑n

j=1 vbj(s)vb(tj) +
∑

j>n vbj(s) given in [8], we prove that our structure
satisfies some important axioms.

2 Results

We begin by recalling the measurement of the complexity of terms. The
variables count of a term t is the total number of occurring variables in t, and
is denoted by vb(t). If t is a variable, then vb(t) = 1 and if t = fi(t1, . . . , tni

),
then vb(t) =

∑ni

j=1 vb(tj).

Definition 2.1. A term with fixed variables count of type τ is inductively
defined by:

(1) Every variable xi in X is a term with fixed variables count of type τ .

(2) If t1, . . . , tni
are terms with fixed variables count of type τ , and if

vb(tk) = vb(tl) for all 1 ≤ k < l ≤ ni, then fi(t1, . . . , tni
) is a term

with fixed variables count of type τ .
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(3) The set W fvc
τ (X) is the smallest set closed under finite application of

(2).

Example 2.2. We consider the type τ = (3, 2) with one ternary operation
symbol and one binary operation symbol, say f and g respectively. Then

x1, x4, x11, f(x7, x2, x4), f(g(x2, x2), g(x4, x2), g(x5, x9)) ∈ W fvc

(3,2)(X),

but

f(g(x2, x8), x4, x1), g(x1, f(x1, x2, x4)) /∈ W fvc

(3,2)(X).

We observe that the set W fvc
τ (X) of terms with fixed variables count of

type τ is not closed under the generalized superposition in general. Consider
the following example. On the set W fvc

(3,2)(X) of terms with fixed variables
count corresponding to a ternary operation symbol f and a binary operation
symbol g, let t = g(x7, x2), s1 = x3, s2 = f(x1, x1, x4). Then S2

g (t, s1, s2) =
g(x7, f(x1, x1, x4)) is not a term with fixed variables count although t, s1 and
s2 are terms with fixed variables count. For this reason, it is possible to
determine the conditions for which the set W fvc

τ (X) is closed under Sn
g .

We give the following statements.

(A1) t is a variable from X and s1, . . . , sn are terms with fixed variable of
type τ .

(A2) s1, . . . , sn are elements in W fvc
τ (X) and t in W fvc

τ (X) \ X such that
var(t) ⊆ Xn and vb(sl) = vb(sm) for 1 ≤ l < m ≤ n.

(A3) s1, . . . , sn are elements in W fvc
τ (X) and t in W fvc

τ (X) \ X such that
var(t) ∩Xn = ∅.

(A4) s1, . . . , sn are elements inW fvc
τ (X) and t inW fvc

τ (X)\X for which there
exists p > n such that xp ∈ var(t) and vb(sj) = 1 for all 1 ≤ j ≤ n.

We have:

Lemma 2.3. If the condition (A1) holds, then Sn
g (t, s1, . . . , sn) ∈ W fvc

τ (X).

Proof. The proof follows from the definition of Sn
g .

Lemma 2.4. Let s1, . . . , sn be elements in W fvc
τ (X) and t in W fvc

τ (X) \X.
Then the following statements are true:

1. If the condition (A1) holds, then Sn
g (t, s1, . . . , sn) ∈ W fvc

τ (X).
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2. If the condition (A2) holds, then Sn
g (t, s1, . . . , sn) ∈ W fvc

τ (X).

3. If the condition (A3) holds, then Sn
g (t, s1, . . . , sn) ∈ W fvc

τ (X).

Proof. Let t = fi(t1, . . . , tni
), s1, . . . , sn be terms with fixed variables count

of type τ . Assume first that all variables of t come from Xn and vb(s1) =
· · · = vb(sn). By definition of Sn

g , we replace terms from {s1, . . . , sn} for
the variables occurring in each t. Thus Sn

g (t, s1, . . . , sn) is also a term with
fixed variables count of the same type. Suppose that var(t) ∩Xn = ∅, which
means that all variables in t are in X \ Xn. It follows from the definition
of Sn

g that Sn
g (t, s1, . . . , sn) equals t. Finally, assume that there exists p > n

such that xp ∈ var(t) and vb(s1) = · · · = vb(sn) = 1. From the definition of
the generalized superposition Sn

g , it is not difficult to see that the variable xp

in t cannot be replaced by any other terms from {s1, . . . , sn}. As a result, the
condition vb(s1) = · · · = vb(sn) = 1 implies that Sn

g (t, s1, . . . , sn) is again a
term with fixed variables count.

Consequently, Lemmas 2.3 and 2.4 allow us to define the partial operation
on W fvc

τ (X). In fact, for a positive integer n and t, s1, . . . , sn ∈ W fvc
τ (X),

the partial mapping

S
n

g : (W fvc
τ (X))n+1

⊸→ W fvc
τ (X)

is inductively defined by:

S
n

g (t, s1, . . . , sn) :=
{

Sn
g (t, s1, . . . , sn) , if (A1) or (A2) or (A3) or (A4) holds,

not defined , otherwise.

Therefore, the partial algebra (W fvc
τ (X), S

n

g ) is formed.

We now show that the partial operation S
n

g defined for this partial algebra
is superassociative as a weak identity.

Theorem 2.5. (W fvc
τ (X), S

n

g ) is a partial superassociative algebra.

Proof. To show that the partial operation S
n

g satisfies S
n

g (S
n

g (t, s1, . . . , sn),

u1 . . . , un) = S
n

g (t, S
n

g (s1, u1, . . . , un), . . . , S
n

g (sn, u1, . . . , un)) as a weak iden-
tity, for every j = 1, . . . , n, we let t, sj, uj be elements in W fvc

τ (X). Assume
first that S

n

g (S
n

g (t, s1, . . . , sn), u1 . . . , un) is defined. Thus, we have the fol-
lowing cases:
Case 1: t ∈ X and Sn

g (t, s1, . . . , sn) ∈ X .
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Case 2: t ∈ W fvc
τ (X)\X, var(t) ⊆ Xn and vb(sl) = vb(sm) for 1 ≤ l < m ≤

n and var(Sn
g (t, s1, . . . , sn)) ⊆ Xn and vb(ul) = vb(um) for 1 ≤ l < m ≤ n.

Case 3: t ∈ W fvc
τ (X)\X, var(t)∩Xn = ∅ and var(Sn

g (t, s1, . . . , sn))∩Xn = ∅.
Case 4: t ∈ W fvc

τ (X) \ X , there exists p > n such that xp ∈ var(t)
and vb(sj) = 1 for all 1 ≤ j ≤ n and there exists q > n such that
xq ∈ var(Sn

g (t, s1, . . . , sn)) and vb(uj) = 1 for all 1 ≤ j ≤ n.

In the first case, S
n

g (S
n

g (t, s1, . . . , sn), u1 . . . , un) equals Sn
g (si, u1 . . . , un)

if t = xi ∈ Xn and equals Sn
g (t, u1 . . . , un) and so t if t = xi ∈ X \ Xn.

For t = xi ∈ Xn, on the right-hand side, by the definition of Sn
g , we have

Sn
g (si, u1 . . . , un). Thus, in this case, our aim is obtained. If t = xi ∈ X \Xn,

on the right-hand side, we get t. As a result, our goal is achieved.
For the second case, we have that S

n

g (S
n

g (t, s1, . . . , sn), u1 . . . , un) is equal

to Sn
g (S

n
g (t, s1, . . . , sn), u1 . . . , un). Moreover, for each 1 ≤ j ≤ n, S

n

g (sj, u1,
. . . , un) is also defined and equals Sn

g (s1, u1, . . . , un). Obviously, Sn
g (s1, u1, . . . ,

un) ∈ W fvc
τ (X). To show that vb(Sn

g (sl, u1, . . . , un)) = vb(Sn
g (sm, u1, . . . , un))

for 1 ≤ l < m ≤ n, we see that vb(sl) = vb(sm) for 1 ≤ l < m ≤ n
and thus which means

∑n

i=1 vbi(sl) =
∑n

i=1 vbi(sm). Because vb(ul) =
vb(um) for 1 ≤ l < m ≤ n, we obtain

∑n

i=1 vbi(sl)vb(ui) +
∑

j>n vbj(sl) =
∑n

i=1 vbi(sm)vb(ui) +
∑

j>n vbj(sm). As a result, vb(Sn
g (sl, u1, . . . , un)) =

vb(Sn
g (sm, u1, . . . , un)). Therefore, S

n

g (t, S
n

g (s1, u1, . . . , un), . . . , S
n

g (sn, u1, . . . ,
un)) is defined and is equal to Sn

g (t, S
n
g (s1, u1, . . . , un), . . . , S

n
g (sn, u1, . . . , un)).

Due to the superassociativity of Sn
g given in [8], so our aim is obtained.

We now consider Case (3). In this case, S
n

g (S
n

g (t, s1, . . . , sn), u1 . . . , un)

equals t. On the other hand, S
n

g (t, S
n

g (s1, u1, . . . , un), . . . , S
n

g (sn, u1, . . . , un))
is also defined and equals t. The proof of this case is complete.

The proof of Case (4) can be directly obtained from the definition of Sn
g

for n ≥ 1.

Considering a family (xi)i≥1 of variables which acts as a family of nullary
operations, we have the following theorem:

Theorem 2.6. (W fvc
τ (X), S

n

g , (xi)i≥1) is a partial generalized superassocia-
tive algebra.

Proof. It is enough to prove that the partial operation S
n

g defined onW fvc
τ (X)

satisfies the following three equations as weak identities: (1) S
n

g (xj , s1, . . . , sn)

= sj if 1 ≤ j ≤ n, (2) S
n

g (xj , s1, . . . , sn) = xj if j > n and (3) S
n

g (t, x1, . . . , xn)
= t. To prove (1), we let s1, . . . , sn be terms with fixed variables count of
type τ . For each j = 1, . . . , n, assume that S

n

g (xj , s1, . . . , sn) is defined.
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Then var(xj) ⊆ Xn and vb(sl) = vb(sm) for 1 ≤ l < m ≤ n. Thus
S
n

g (xj , s1, . . . , sn) equals Sn
g (xj , s1, . . . , sn), which means sj . If j > n and

S
n

g (xj , s1, . . . , sn) is defined, then we get Sn
g (xj , s1, . . . , sn) = xj . Finally,

suppose that for a term with fixed variables count t, S
n

g (t, x1, . . . , xn) is de-
fined. From this, by the conditions (A1), (A2), (A3), and (A4), we inductively
divide our consideration into two parts. If t = xj for 1 ≤ j ≤ n, then by
(A1), we have that S

n

g (xj , x1, . . . , xn) is equal to Sn
g (xj , x1, . . . , xn) and thus

xj . If t is a variable from X \ Xn, then by (A2), our goal is obtained. If
t = fi(t1, . . . , tni

) and assume that each tk already known for k = 1, . . . , ni,
then S

n

g (fi(t1, . . . , tni
), x1, . . . , xn) equals Sn

g (fi(t1, . . . , tni
), x1, . . . , xn). By

our inductive step, we also conclude that Sn
g (fi(t1, . . . , tni

), x1, . . . , xn) and
fi(t1, . . . , tni

) are equal.

Example 2.7. Consider the type τ = (2) with a binary operation symbol f
and a subset

D = {x1, f(x2, x4), f(x3, x1), f(x1, x1)}

of W fvc

(2) (X) with respect to the partial operation S
1

g of an arity 2 defined by
the following table:

S
1

g x1 f(x2, x4) f(x3, x1) f(x1, x1)

x1 x1 f(x2, x4) f(x3, x1) f(x1, x1)
f(x2, x4) f(x2, x4) f(x2, x4) f(x2, x4) f(x2, x4)
f(x3, x1) f(x3, x1) not defined not defined not defined
f(x1, x1) f(x1, x1) f(f(x2, x4), f(x2, x4)) f(f(x3, x1), f(x3, x1)) f(f(x1, x1), f(x1, x1))

It is not hard to see that the partial binary operation S
1

g defined on D is
weak associative. We give a demonstration as follows:
We consider terms x1, f(x2, x4) and f(x1, x1) in D. To show that an equation

S
1

g(S
1

g(f(x1, x1), x1), f(x2, x4)) = S
1

g(f(x1, x1), S
1

g(x1, f(x2, x4)))

is a weak identity, suppose first that the left-hand side is defined. Hence, we

have that S
1

g(S
1

g(f(x1, x1), x1), f(x2, x4)) is equal to S1
g (f(x1, x1), f(x2, x4))

and thus f(f(x2, x4), f(x2, x4)). As a result, the right-hand side is also de-
fined and equals to S1

g (f(x1, x1), f(x2, x4)).
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