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Abstract

Clustering is an essential data exploration technique applied to
many disciplines and applications such as data mining, image process-
ing, bioinformatics, and machine learning. A clustering method iden-
tifies hidden patterns in a dataset and combines similar data points
into clusters. The problems are challenging when they have many data
points, attributes, and cluster partitions. In this paper, we propose an
adaptive differential evolution with an archive strategy (ADEAS) to
find candidate centroids and minimize their intra-cluster distance for
solving partitional clustering problems. The archiving strategy stores
inferior solutions during the selection operation to increase population
diversity and create directions for guiding the search. We validate the
proposed algorithm with several well-known methods using the UCI
datasets. The results show that ADEAS outperforms the compared
methods.
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1 Introduction

Data clustering is a data mining technique for grouping data objects so that
objects in the same group are more similar to each other than objects in
different groups. It has been used in many fields to identify patterns and
relationships within the data. The partition-based clustering methods di-
vide the data using similarity measures or validation indices to find optimal
centroids. The intra-cluster distance is a widely used objective, and the K-
means is a well-known method that iteratively improves the centroids. How-
ever, the clusters produced by K-means are sensitive to the initial centroids.
Therefore, researchers have introduced evolutionary optimizations such as
Genetic Algorithm (GA) [1], Differential Evolution (DE) [2], Ant Colony
Optimization (ACO) [3], and Particle Swarm Optimization (PSO) [4] to find
the optimal cluster solutions. Here, we propose an adaptive differential evo-
lution algorithm with an archive strategy (ADEAS) for solving partitional
clustering problems. The algorithm creates an archive for storing inferior
solutions during DE’s selection and reuses them in the mutation process to
improve population diversification and searchability. Our contribution is the
improved clustering method that can give optimal cluster partitions for var-
ious real-world problems.
The paper is organized as follows: In Section 2, we describe the cluster-
ing problems and review the evolutionary algorithms for data clustering. In
Section 3, we introduce the adaptive differential evolution with an archive
strategy (ADEAS). In Section 4, we present preliminary and comparison ex-
periments using the UCI datasets. The performance comparison of ADEAS
with other methods is shown in Section 5. Finally, we provide a conclusion
in the last section.

2 Literature review

Let S = {x1, x2, . . . , xn} be the set of n data points and k be the number of
clusters. The partition-based clustering algorithm finds the optimal clusters
with corresponding centroids by using some similarity measures. To measure
the distance between two points, we use the Euclidean distance defined as
follows:

D(xi, xj) =

√

√

√

√

d
∑

m=1

(xim − xjm)2,
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where d is the dimension of each data point. Let C = {c1, c2, . . . , ck} be a set
of candidate centroids. The data points are assigned to the nearest cluster
center ci to obtain the set Q = {Q1, Q2, . . . , Qk} of clusters corresponding to
C. To evaluate Q, we use the intra-cluster distance calculated by

f(Q) =
k

∑

i=1

∑

x∈Qi

D(ci, x)

The low value of f(Q) indicates a suitable clustering result. Minimizing
the intra-cluster distance over all possible clusters is challenging because this
objective function is highly non-linear, multimodal, and non-separable. Thus
various evolutionary optimization algorithms have been proposed. We focus
on differential evolution algorithms.

Many researchers proposed adaptive differential evolution algorithms for
data clustering. Xiang [5] presented the differential algorithm with a shuffled
strategy (DSDE) to improve the clustering quality by randomly separating
the population into two subpopulations. Both subgroups use DE/best/1
mutation strategy and merge at the end of each generation. The results
of minimizing intra-cluster distances show that DSDE outperforms ACO,
ABC, PSO, and PSOAG on the UCI datasets. Nayak et al. [6] proposed
the cross-mutation-based differential evolution (CMDE) that combines two
mutation strategies (DE/rand/1 and DE/best/1) for data clustering. The
weight of using the best vector decreases from one at the start to zero at the
maximum generation. Using intra-cluster distance, the CMDE outperforms
DE/rand/1 and DE/best/1 and is competitive with the DSDE method on the
UCI datasets. Alswaitti et al. [7] introduced the variance-based differential
evolution algorithm (VDEO) for data clustering. The algorithm creates a mu-
tant vector by randomizing five vectors for the switchable mutations between
DE/rand/1 and DE/best/1. It calculates the data variances in each attribute
dimension and uses them as different scaling factors (for each component)
in the mutation process. The results on the UCI datasets show that the
strategy provides solutions with less intra-cluster distance than DSDE and
FSDE. Tarkhaneh and Moser [8] proposed the improved differential evolu-
tion algorithm using the Archimedean Spiral and neighborhoods search-based
mutation approach for cluster analysis (ADENS). It uses the scaling factor
in the range according to the number of function evaluations to generate
solutions that replace poorly performing ones. The algorithm outperforms
ICSK, DE-KM, and DSDE in minimizing intra-cluster distance. Wu et al. [9]
presented the adaptive differential evolution called ACODE for data cluster-
ing. The algorithm combines the ant colony strategy to select three mutation
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strategies (DE/rand/1, DE/current-to-pbest/1, and DE/current-to-rand/1)
and two crossover strategies (binomial and exponential). The results show
that ACODE outperforms CSO, SL-PSO, DSDE, and EPSDE algorithms
using intra-cluster distance. Sharma and Chhabra [10] proposed the PSO
algorithm with polygamous crossover (PSOPC) that mates the best particle
with other random particles using the arithmetic crossover to refine the ex-
ploration and exploitation strategy. The results on the UCI datasets show
that the algorithm provides less intra-cluster distance than PSO, GA, FA,
and GWO. However, these algorithms can only provide the best solutions for
some problems in the UCI datasets. We propose using the adaptive differen-
tial evolution with archive strategy (ADEAS) that stores inferior population
vectors to increase population diversity and enhance searchability.

3 The proposed ADEAS method

The ADEAS modifies the DEASC algorithm introduced in 2020 [11] to solve
continuous optimization problems. It is an enhanced differential evolution
algorithm by the switching crossover rate values CR in [0, 0.1] or [0.9, 1] and
using scaling factor values F in [0.5, 0.7]. The algorithm can solve general
well-known test functions with fast convergence speed and performs well for
high dimensional test functions. The ADEAS adds the archive strategy that
stores inferior solutions during selection and reuses them in the mutation
process. The proposed algorithm can be described as follows:

1. Input and control parameters:
Number of attributes of a data set: A, number of data clusters: K,
dimension: D = K × A, objective function to be minimized: intra-
cluster distance function f , population size: NP = 100, maximum
number of function evaluations: maxnf , scaling factor: F in the range
of [0.5, 0.7], crossover rate: CR in the range of [0, 0.1] or [0.9, 1], archive:
Q of size NQ, the initial probabilities for using low or high crossover
rates: pc1 = 0.1 and pc2 = 0.9, the initial counters corresponding to
pc1 and pc2 : nc1 = nc2 = 0.

2. Initialization: Initial the population P = [xi] for i = 1, 2, . . . , NP
where xi = [y11, . . . , y1A, . . . , yK1, . . . , yKA] and [yj1, . . . , yjA] is a ran-
dom data point for j = 1, 2, . . . , K. Calculate the fitness values f(xi)
and record the best vector and best fitness value, denoted by xbest and
fbest, respectively.
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3. Archive initialization: Initial the archive Q of size NQ with the random
vectors the same way as P . Use Q in the mutation to diversify and
guide the search and use it in the selection to store the inferior solutions.
Set the index iq = 0 to update the archive Q.

4. Mutation: For each target vector xi, choose distinct random vectors xr1

and xr2 ∈ P different from xi, and xq ∈ Q. Create the mutant vector
vi by vi = xr1 +F · (xr2 − xq), where F is a random real number in the
range [0.5, 0.7]. If a component of vi is out of bound, then randomly
adjust it to the bound.

5. Crossover: Generate a random number rd in [0, 1]. If rd < pc1, then
randomize CR in the range of [0, 0.1]; otherwise, randomize CR in the
range of [0, 9, 1]. Create the trial vector ui as follows.

ui,j = {
vi,j ; if Rj ≤ CR or j = Ii
xi,j ; otherwise,

.

where Rj is a random real value in [0, 1] and Ii is a randomly fixed
integer from j = 1, 2, 3, . . . , D used to guarantee a change of at least
one component.

6. Selection and updating of the archive: Replace xi with ui if the fitness
value of ui is better than that of xi and store xi in the archive Q as
the element at the index iq. Increment iq by 1 (modulo NQ). If the
fitness value of ui is also better than fbest, update xbest and fbest.

7. Updating control parameters: Increase nc1 by 1 if a better solution is
randomized with CR in the range [0, 0.1], otherwise, increase nc2 by 1
when CR is in the range [0.9, 1]. If nc1 + nc2 ≥ 100, add 10 to both
nc1 and nc2 to prevent them from being 0. Then, update pc1 and pc2
using the formulas pc1 = 0.9pc1+0.1nc1/(nc1+nc2.) and pc2 = 1−pc1,
respectively. Reset nc1 and nc2 to 0 after updating pc1 and pc2.

8. Stopping condition: Repeat steps 4− 7 until the fbest value has stayed
the same for the specified period of generations.

4 Experimental Designs

We conduct two experiments: a preliminary experiment to find the suitable
setting for the ADEAS method and another one to compare ADEAS using
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the obtained setting with six other selected methods. Both methods are per-
formed on nine UCI datasets. The datasets indicate the number of instances,
attributes, and classes in Table 1. The optimal values present the best-known
lowest intra-cluster distance values.

Table 1: The description of UCI datasets.
Name Instances Attributes Classes Optimal values

Iris 150 4 3 96.65548
Wine 178 13 3 16292.18464
Glass 214 9 6 210.00105
Thyroid 215 5 3 1866.46617
Haberman 306 3 2 2566.98890
Balance scale 625 4 3 1423.82040
Cancer 683 9 2 2964.38697
Vowel 871 3 6 148967.24081
Cmc 1473 9 3 5532.18472

4.1 Finding the Suitable Setting for ADEAS

The first experiment uses population size NP = 100 and archive size NQ =
4·NP . The algorithm stops when the number of function evaluations reaches
maxnf = 200000 · NP , or fbest is the same for 1000 consecutive genera-
tions. We explore the search capabilities of DEASC [11] with and without the
archive Q and combine two initialization methods: I1 and I2. Method I1 ran-
domly creates the centroids with values in the ranges of data attributes, while
Method I2 creates the centroids from the data points. Thus the experiment
consists of four combination methods: DEASCI1, DEASCI2, ADEASI1, and
ADEASI2. The performance comparison between these four variants and
the classical DE algorithm (F = 0.5, CR = 0.9) on the Iris, Wine, Glass,
and Vowel datasets uses 30 independent runs for each method. We record
the number of successful runs that match the optimal intra-cluster distance
values in Table 1.

4.2 Comparing ADEAS with Other Optimization Al-
gorithms

The second experiment compares the performance of ADEAS with other
optimization algorithms on the Iris, Wine, Glass, Thyroid, Haberman Bal-
ance scale, Cancer, Vowel, and CMC datasets. The compared methods are
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PSOPC, ACODE, ADENS, VDEO, CMDE, and DSDE methods [5–10]. We
take their results reported in the respective original papers. The ADEAS uses
the suitable setting from Experiment 1 and performs 30 independent runs.
We record the number of successful runs (NS), the mean of best function
values (Mean fb), the mean of function evaluations (Mean nf), the standard
deviation (SD), and the percentage standard deviation (%SD).

5 Experimental results

5.1 Suitable Setting for ADEAS

The results of the preliminary experiment are reported in Table 2. The
table shows the mean and the percentage of the standard deviation of the
lowest intra-cluster distance values, function evaluations, and the number of
successful runs for each dataset.

Table 2: Performance comparison of DE, DEASCI1, DEASCI2, ADEASI1,
and ADEASI2 over 30 independent runs.

Name Statistics DE DEASCI1 DEASCI2 ADEASI1 ADEASI2

Iris NS 30 30 30 30 30

Mean fb 96.65548 96.65548 96.65548 96.65548 96.65548
SD 0.00 0.00 0.00 0.00 0.00
Mean nf 27884.80 77472.50 75929.40 67495.67 86738.77
%SD 10.98 19.24 17.14 19.24 14.44

Glass NS 0 14 19 1 27

Mean fb 213.27063 210.188016 210.0393 210.41496 210.03490
SD 0.93 0.10 0.05 0.04 0.11
Mean nf 154142.27 3323269.37 1374300.50 731463.87 903432.87
% SD 8.82 17.03 52.59 15.97 13.85

Thyroid NS 3 23 30 26 30

Mean fb 1887.833 1868.23515 1866.46617 1868.842 1866.46617
SD 0.38 0.32 0.00 0.00 0.00
Mean nf 48395.87 109700.87 88165.83 109565.17 100613.67
% SD 5.78 16.90 15.70 17.66 17.00

Vowel NS 20 30 30 30 30

Mean fb 148973.3652 148967.2408 148967.2408 148967.2408 148967.2408
SD 0.02 0.00 0.00 0.00 0.00
Mean nf 99544.23 1152481.40 874733.77 330985.90 364567.97
% SD 17.01 55.74 21.13 11.65 12.78

We focus on the maximum number of successful runs, highlighted in bold.
Each algorithm achieves all 30 successful runs for Iris. ADEASI2 obtains
27 successful runs for Glass and outperforms the others. DEASCI2 and
ADEASI2 are comparable and give the best performance for Thyroid. In the
case of Vowel, all algorithms accomplish a maximum of 30 successful runs
except for DE. From these results, we select ADEASI2, using the archive Q



712 T. Poonthong, P. Puphasuk, J. Wetweerapong

and creating the initial centroids from the data point, as the suitable setting
for our proposed algorithm and use it in the second comparison experiment.

5.2 Performance Comparison of ADEAS with Other

Optimization Algorithms

Table 3 reports the comparison results of our proposed method and six well-
known evolutionary methods on UCI datasets. The table presents the lowest
value of Best, Mean fb, and SD in bold text. The unavailable results of some
methods on some datasets are indicated by “ - ”. All algorithms give the
same results for Iris and Haberman. ADEAS, PSOPC, ACODE, and DSDE
achieve the lowest of best values for Wine, whereas ADEAS gives the lowest
Mean fb and SD values. ADEAS demonstrates lower Best, Mean fb, and
SD values than other algorithms for Glass. ADEAS, ACODE, VDEO, and
DSDE achieve the lowest of best values for Thyroids, whereas ADEAS gives
the lowest Mean fb and SD values. ADEAS, ACODE, and VDEO achieve
the lowest of best values for the Balance scale dataset, whereas ADEAS gives
the lowest Mean fb and SD values. All algorithms give the best results for
Cancer except for VDEO. ADEAS and DSDE achieve the lowest of best
values for the Vowel dataset, whereas ADEAS gives the lowest Mean fb and
SD values. ADEAS, PSOPC, and ADENS achieve the lowest of best values
for CMC, whereas CMDE, DSDE, and ADEAS give the lowest Mean fb and
SD values. Consequently, ADEAS outperforms the six compared methods by
achieving the lowest values for Best, Mean fb, and SD on all nine datasets.

6 Discussion

The ADEAS algorithm randomly selects initial centroids from data points
so they are near some data points from the beginning, while the initial cen-
troids with random values may be far from all data points. This initialization
method also prevents the cluster with no data points. ADEAS employs the
archive strategy that stores inferior solutions to enhance population diversity
and create directions for guiding the search where different vectors from the
archive to current population solutions tend to approach optimal solutions.
The algorithm uses the directions to generate the mutation vectors. As a re-
sult, ADEAS can find the best intra-cluster distances for all nine datasets by
the stopping condition that allows the population to generate new candidate
solutions.
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Table 3: Performance comparison of PSOPC, ACODE, ADENS, DSDE,
VDEO, DSDE, and ADEAS algorithms.
Data Stat Methods

PSOPC ACODE ADENS VDEO CMDE DSDE ADEAS

Iris Best 96.66 96.66 96.66 96.66 96.66 96.66 96.66

Mean fb 96.66 96.66 96.66 96.66 96.66 96.66 96.66

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wine Best 16292.18 16292.18 16292.19 16292.43 16292.2 16292.18 16292.18

Mean fb 16292.54 16292.23 16292.67 16293.56 16292.2 16292.39 16292.18

SD 0.61 0.15 0.60 0.87 0.00 0.25 0.00

Glass Best 210.43 210.43 - 210.40 - 210.05 210.00

Mean fb 219.28 213.25 - 213.62 - 212.73 210.03

SD 11.32 5.71 - 1.99 - 1.68 0.11

Thyroid Best - 1866.47 - 1866.47 1908.96 1866.47 1866.47

Mean fb - 1879.14 - 1867.51 1908.96 1874.00 1866.47

SD - 12.04 - 0.91 0.00 11.77 0.00

Balance Best - 1423.82 - 1423.83 - - 1423.82

scale Mean fb - 1423.89 - 1425.13 - - 1423.82

SD - 0.12 - 0.88 - - 0.00

Cancer Best 2964.39 - 2964.39 2964.41 2964.39 2964.39 2964.39

Mean fb 2964.39 - 2964.39 2964.43 2964.39 2964.39 2964.39

SD 0.00 - 0.00 0.02 0.00 0.00 0.00

Haber- Best 2566.99 - - 2566.99 - - 2566.99

man Mean fb 2566.99 - - 2566.99 - - 2566.99

SD 0.00 - - 0.00 - - 0.00

Vowel Best - - - 149073.62 149946.00 148967.24 148967.24

Mean fb - - - 149682.56 149946 149193.97 148967.24

SD - - - 615.17 0.00 373.45 0.00

CMC Best 5532.18 - 5532.18 - 5532.18 5532.18 5532.18

Mean fb 5532.20 - 5532.22 - 5532.18 5532.18 5532.18

SD 0.01 - 0.05 - 0.00 0.00 0.00

7 Conclusion

We have presented an adaptive differential evolution with an archive strat-
egy for solving partitional clustering problems. The algorithm employs the
archive strategy to enhance population diversity and improve searchability.
Experimental results show that the ADEAS outperforms the classic DE and
several well-known population-based algorithms. ADEAS can find the best
intra-cluster distances for UCI datasets and becomes a tool for data analysis,
pattern recognition, and knowledge discovery.

Acknowledgment

Tanapon Poonthong thanks the Science Achievement Scholarship of Thailand
for financial support. This research was partially supported by the Funda-
mental Fund of Khon Kaen University and the National Science, Research
and Innovation Fund (NSRF).



714 T. Poonthong, P. Puphasuk, J. Wetweerapong

References
[1] J. H. Holland, Genetic algorithms, Scientific American, 267, no. 1,

(1992), 66–73.

[2] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic
for global optimization over continuous spaces, Journal of global opti-
mization, 11, (1997), 341–359.

[3] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE
Computational Intelligence Magazine, 1, no. 4, (2006), 28–39.

[4] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of
the International Conference on Neural Networks, 4, (1995), 1942–1948.

[5] W. L. Xiang, N. Zhu, S. F. Ma, X. L. Meng, M. Q. An, A dynamic
shuffled differential evolution algorithm for data clustering, Neurocom-
puting, 158, (2015), 144–154.

[6] S. K. Nayak, P. K. Rout, A. K. Jagadev, A cross mutation-based dif-
ferential evolution for data clustering, International Journal of Data
Mining, Modelling and Management, 9, no. 1, (2017), 17–38.

[7] M. Alswaitti, M. Albughdadi, N. A. M. Isa, Variance-based differen-
tial evolution algorithm with an optional crossover for data clustering,
Applied Soft Computing, 80, (2019), 1–17.

[8] O. Tarkhaneh, I. Moser, An improved differential evolution algorithm
using Archimedean spiral and neighborhood search based mutation ap-
proach for cluster analysis, Future Generation Computer Systems, 101,
(2019), 921–939.

[9] G. Wu, W. Peng, X. Hu, R. Wang, H. Chen, Configuring differential
evolution adaptively via path search in a directed acyclic graph for data
clustering, Swarm and Evolutionary Computation, 55, (2020), 100690.

[10] M. Sharma, J. K. Chhabra, An efficient hybrid PSO polygamous
crossover based clustering algorithm, Evolutionary Intelligence, 14, no.
3, (2021), 1213–1231.

[11] P. Puphasuk, J. Wetweerapong, An enhanced differential evolution al-
gorithm with adaptation of switching crossover strategy for continuous
optimization, Foundations of Computing and Decision Sciences, 45, no.
2, (2020), 97–124.


