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Abstract

The main objective of this paper is to compare the efficiency of dif-
ferent methods involving our proposed method in estimating the two
unknown parameters of the Rayleigh distribution. For this purpose,
the Monte Carlo simulation analysis is performed. The methods of
estimation that we have considered are the maximum likelihood, mo-
ments, ordinary least squares and our proposed relative least squares
method. Two indicators are used to assess the efficiency for each
method; namely, the total deviation (TD) and the mean square error
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(MSE). The smaller the value of these indicators, the more efficient is
the method.

1 Introduction

The Rayleigh distribution was first proposed by Lord Rayleigh in 1880 [1]
in the field of acoustics and is one of the most important distributions used
with Skewed Data. It is closely related to other commonly used distribu-
tions such as the Weibull distribution, the Chi-Square distribution and the
extreme value distribution. The Rayleigh distribution has been widely used
by engineers and physicists to model radiation, radar images and other re-
lated phenomena [2]. The authors in [3], [4], and [5] study the minimax
shrinkage estimator technique, Double Stage Shrinkage-Bayesian Estimator
and Inequalities system, respectively.
The rest of this paper is organized as follows:
In Section 2, we include a quick review of some of the basic concepts related
to the Rayleigh distribution such as the density function, the distribution
function and the Moments about origin through which we can find the mean
and variance of the distribution.
In Section 3, we include the theoretical study of four of the estimation
methods used in this paper. More specifically, maximum likelihood method
(MLM), moments method (MM), ordinary least squares method (OLSM)
and our proposed relative least squares method (RLSM).
In Section 4, we include the experimental aspect represented by conducting a
Monte Carlo simulation analysis to compare the efficiency of the estimators
under study by adopting different sample sizes and different initial values for
the true parameters.

2 On The Rayleigh distribution

The probability density function for the continuous random variable X that
follows the Rayleigh distribution is [5]:

f(x, α, β) =
(x− α)

β2
exp

[

−(x− α)2

2β2

]

, α < x < ∞, β > 0 (2.1)



Assessing the Efficiency of Several Approaches... 1053

Accordingly, the distribution function can be determined as:

F (x, α, β) =

∫ X

α

f(u, α, β)du = 1− exp

[

−(x− α)2

2β2

]

, α < x < ∞, β > 0

(2.2)
The rth moment about origin denoted by Mr can be obtained as:

Mr = E(xr) =

∫

∞

α

xrf(x, α, β)dx

For the Rayleigh distribution, this implies that:

Mr =
r

∑

i=0

Cr
i α

i(2β2)
r−i
2 Γ(

r − i

2
+ 1) (2.3)

Consequently, the mean and variance of the distribution can be easily ob-
tained as follows:

Mx = E(x) = M1 = α+ β

√

π

2
(2.4)

σ2
x = var(x) = M2 −M2

1 = β2(2−
π

2
) (2.5)

3 Estimation Methods

3.1 Maximum Likelihood Method

Assuming that x1, x2, . . . , xn is a random sample from Ray(α, β), the likeli-
hood function of this sample is given by:

L(α, β; x1, x2, . . . , xn) =

n
∏

i=1

f(xi, α, β) =
1

β2n
e

−1

2β2

∑n
i=1

(xi−α)2
n
∏

i=1

(xi − α)

(3.6)
Accordingly, the log likelihood function is:

ln(α, β; x1, x2, . . . , xn)= −2n ln β −

1

2β2

n
∑

i=1

(xi − α)2 +
n

∑

i=0

ln(xi − α)

(3.7)
It is clear that the value of α that maximize L(α, β; x1, . . . , xn) is the smallest
value of the sample denoted by x(1) that is:

α∧

MLE = x(1) = min (x1, x2, . . . , xn) (3.8)
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Differentiating ln(α, β; x1, x2, . . . , xn) in equation (3.7) with respect to β,

equating the resulting derivative to zero and solving for β, we obtain the
maximum likelihood estimator for β given by:

β∧

MLE =

√

∑n

i=1 (xi − x(1))
2

2n
(3.9)

3.2 The Moments Method

Let us assume that Ẍ and s2 denote the mean and variance of a random
sample from Ray(α, β). Then by equating Ẍ with the right hand side of
equation (2.4), we get:

Ẍ = α + β

√

π

2
(3.10)

Similarly, equating s2 with the right hand side of equation (2.5) we get:

s2 = β2(2−
π

2
) (3.11)

Solving equation (3.10) and (3.11) for α and β we obtain the Moments esti-
mators given as follows:

α∧

ME = s

√

2

4− π
(3.12)

α∧

ME = Ẍ − s

√

π

4− π
(3.13)

3.3 Ordinary Least Squares Method

Let us assume that x1, x2, . . . , xn is a random simple from Ray(α, β).
Putting ui = F (xi), i = 1, 2, . . . , n where F (xi) is the distribution function
defined in equation (2.2), then:

ui = 1− e
−

1

2β2
(xi−α)2

,

which implies that:

−

1

2β2
(xi − α)2 = ln (1− ui)

Solving for xi, we get:

xi = α + β[−2 ln(1− ui)]
0.5 (3.14)
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Putting:
zi = [−2 ln(1− ui)]

1

2 , i = 1, 2, . . . , n, (3.15)

the ordinary least squares estimators for α and β can be obtained by solving
the following two equations [6]:

n
∑

i=1

xi = nα + β

n
∑

i=1

zi,

n
∑

i=1

xizi = α

n
∑

i=1

zi + β

n
∑

i=1

z2i

As a result,

α∧

OLS =

∑n

i=1 z
2
i

∑n

i=1 xi −
∑n

i=1 zi
∑n

i=1 zi xi

n
∑n

i=1 z
2
i − (

∑n

i=1 zi )2
. (3.16)

β∧

OLS =
n
∑n

i=1 zixi − (
∑n

i=1 zi)(
∑n

i=1 xi)

n
∑n

i=1 z
2
i − (

∑n

i=1 zi)
2

. (3.17)

3.4 Relative Least Squares Method (Proposed method)

The relative least squares (RLS) estimators can be obtained by minimizing
the residuals relative to the observed values of dependent variable [7].
In this paper, using the RLS method, we estimate the two unknown param-
eters α and β of the Rayleigh distribution. Assume

T =

n
∑

i=1

[
1

xi

(xi − α− βzi)]
2.

Represent the relative residuals sum of squares, where zi is given in equation
(3.8). Moreover, if we let wi =

1
xi

and ti =
zi
xi
, i = 1, 2, . . . , n, then

T =

n
∑

i=1

(1− αwi − βti)
2.

Differentiating T with respect to α and β respectively, equating the resulting
derivative to zero, and rearranging the terms we get:

n
∑

i=1

wi = α

n
∑

i=1

wi
2 + β

n
∑

i=1

witi

n
∑

i=1

ti = α

n
∑

i=1

witi + β

n
∑

i=1

ti
2
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Solving for α and β, we obtain the (RLS) estimators given by:

α∧

RLS =

∑n

i=1wi ti
∑n

i=1 ti −
∑n

i=1wi

∑n

i=1 t
2
i

(
∑n

i=1wi ti)
2
−

∑n

i=1w
2
i

∑n

i=1 t
2
i

(3.18)

β∧

RLS =

∑n

i=1wi ti
∑n

i=1wi −

∑n

i=1w
2
i

∑n

i=1 ti

(
∑n

i=1wi ti)
2
−

∑n

i=1w
2
i

∑n

i=1 t
2
i

(3.19)

4 Numerical Study

In this section, we will perform the Monte Carlo Simulation analysis to com-
pare the efficiency of the different estimation methods that were previously
mentioned.
For this purpose, three sample sizes are assumed; namely, small (n = 10),
medium (n = 50) and large (n = 100) with postulated pairs of true val-
ues (α, β) = (1, 1), (1, 2), (2, 1), (2, 2). The results are based on 1000 simula-
tion runs. The random samples of different sizes are generated by observ-
ing that if the random variable u is distributed uniformly on (0, 1), then

x = α + β[−2 ln(1− u)]
1

2 , a distribution denoted as Ray(α, β).
Such generated data have been employed to obtain the required esti-

mators for the unknown parameters α and β. Two indicators are used to
compare such estimators:

i The total deviation (TD) defined as [8], [9], [10]

TD =

∣

∣

∣

∣

α∧
− α)

α

∣

∣

∣

∣

+

∣

∣

∣

∣

β∧
− β)

β

∣

∣

∣

∣

, (4.20)

where α∧ and β∧ are the estimated values of α and β, respectively.

ii The mean square error (MSE) defined as:

MSE =
1

n

n
∑

i−1

[F∧(xi)− F (xi)]
2, (4.21)

where F (xi) is the distribution function defined in equation (2.2) and F∧(xi)
is given as:

F∧

(xi)
= 1− exp[−

(xi − α∧)2

2β∧2 ].

The estimator which yields the smallest (TD) and smallest (MSE) is the
best.



Assessing the Efficiency of Several Approaches... 1057

5 Results and Conclusions

We have presented the results of thesimulation analysis that was performed
to estimate the two unknown parameters of the Rayleigh distribution by
using four methods of estimation and different sample sizes with different
postulated values of the parameters α and β. From the comparison of the
efficiencies of the different methods of estimation, we concluded that the
maximum likelihood method works the best in more cases we have considered
for estimating both α and β since it has the smallest total deviation and
smallest mean square error, followed by the Moments method.
However, the proposed method performs well in many cases, especially when
the sample size is small. These results are represented in tables 1, 2 and 3:

Table 1: Simulation analysis results at n = 10
Method α β α∧ β∧

TD Mse

LM

1 1 1.394469 0.740035 0.654434 1.144112E-14

1 2 1.788938 1.480070 1.048902 7.942750E-15

2 1 2.394469 0.740035 0.457199 3.001672E-14

2 2 2.788938 1.480070 0.654434 8.091597E-15

Moments

1 1 1.147797 1.309913 0.457710 0.000354

1 2 1.309913 2.147797 0.383812 0.003539

2 1 2.396663 0.969409 0.228923 0.003753

2 2 2.309913 2.147797 0.228855 0.003539

OLSM

1 1 1.979167 0.956555 1.022612 0.010903

1 2 1.380536 2.00731 0.384191 0.003006

2 1 2.311602 1.045691 0.201492 0.001755

2 2 2.411899 1.980841 0.215529 0.002699

RLS

1 1 1.947715 0.964598 0.983117 0.031585

1 2 1.414872 1.980745 0.424499 0.015266

2 1 2.415835 0.975236 0.232682 0.000299

2 2 2.328526 2.043034 0.185780 0.000111

Table 2: Simulation analysis results at n = 50
Method α β α∧ β∧

TD Mse

LM

1 1 1.174767 0.889743 0.285025 4.166021E-14

1 2 1.349535 1.779485 0.459792 2.5350600E-14

2 1 2.174767 0.889743 0.197641 9.108931E-14

2 2 2.349535 1.779485 0.285025 4.166021E-14

Moments

1 1 1.396663 0.969409 0.427254 0.003753

1 2 1.396663 1.969409 0.411959 0.003753

2 1 2.385882 0.982723 0.210218 0.044170

2 2 2.396663 1.969409 0.213627 0.003753

OLSM

1 1 1.362343 1.001122 0.363465 0.004712

1 2 1.386404 1.980324 0.396242 0.004525

2 1 2.366523 0.997573 0.185688 0.004710

2 2 2.355805 2.007484 0.181645 0.044692

RLS

1 1 1.376641 0.989810 0.386831 0.018901

1 2 1.367586 1.996622 0.369275 0.004709

2 1 2.385882 0.982723 0.210218 0.044170

2 2 2.358687 2.004582 0.181635 0.001105
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Table 3: Simulation analysis results at n = 100
Method α β α∧ β∧

TD Mse

LM

1 1 1.122719 0.923571 0.199148 7.641764E-14

1 2 1.245438 1.847142 0.321867 4.593349E-14

2 1 2.122719 0.923571 0.137789 1.759009E-14

2 2 2.245438 1.847142 0.199148 7.641764E-14

Moments

1 1 1.358128 1.010033 0.368161 0.004495

1 2 1.358128 2.010033 0.363145 0.004490

2 1 2.358128 1.010033 0.189097 0.004495

2 2 2.358128 2.010033 0.184080 0.004490

OLSM

1 1 1.365799 1.001811 0.367610 0.005693

1 2 1.375747 1.993259 0.379118 0.005693

2 1 2.390565 0.981670 0.213612 0.005580

2 2 2.395302 1.977394 0.208954 0.005500

RLS

1 1 1.371620 0.997059 0.374561 0.008266

1 2 1.346293 2.016486 0.354536 0.009810

2 1 2.358186 1.007205 0.186298 0.010172

2 2 2.368079 1.999832 0.184123 0.002718
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