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Abstract

Spatial data refers to the information regarding the price of rice
obtained from several regions in East Java, namely Kediri, Blitar,
Malang, Probolinggo, Pasuruan, Mojokerto, Madiun, Surabaya and
Batu. The data pertainsto rice prices collected throughout the pe-
riod from January 2019 to July 2023 can be classified as a time series.
Thus the rice price data for nine East Java regions from January
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2019 to July 2023 are spatiotemporal. This data can be analyzed us-
ing the statistical model Generalized Space Time Autoregressive Inte-
grated (GSTARI). This model is a modification of GSTAR designed
for non-stationary data. Numerous previous studies have been con-
ducted regarding the spatial modeling of rice prices. However, the use
of Bayesian estimation methodology within a GSTARI model remains
unexplored. In estimating model parameters, the Bayesian approach
has advantages over the non-Bayesian approach; namely, the small
sample size and free distribution of the data. In this paper, we con-
struct the GSTARI (1,1,1) model with a Bayesian estimator in order
to model East Java’s rice prices. The weight used in this investigation
is Inverse Distance. According to the findings of this investigation, all
GSTARI (1,1,1) parameters estimated using the Bayesian estimator
are significant at all locations. With the OLS estimator, the GSTARI
model parameters (1,1,1) were not significant at all locations. The
GSTARI (1,1,1) model with Bayesian estimator also yields RMSE
and AIC values that are much smaller than the OLS estimator.

1 Introduction

The selling price of rice in several locations during a certain period is spatiotempo-
ral data. In reality, the spatiotemporal data that is currently available does not yet
satisfy stationary properties. Generalized Space Time Autoregressive (GSTAR) is
a statistical technique that can be employed to model such data. The GSTAR
model’s characteristics are the parameter values at each distinct location [4],[5].
In general, the available spatiotemporal data is not stationary. This condition
cannot be depicted using GSTAR because there is no requirement for stationary
checking in this model. To counteract this, the GSTARI model was devised for non-
stationary data [16]. Numerous researchers have utilized the GSTARI model in
the past. Bonar et al. [7] modeled the North Sumatra consumer price index using
the GSTARI-ARCH model and Ordinary Least Square (OLS) estimator method.
Alawiyah et al. [8] modeled positive Covid patients in Bandung using GSTARI
and employed OLS to estimate the parameter model. In the meantime, Monika
et al. [16] used the GSTARI-X-ARCH model, which was applied to the West
Java climate data and they estimated the model parameters using the Maximum
Likelihood (ML) and the Generalized Least Square (GLS) estimator methods.
Problems arise when modeling spatiotemporal data with GSTARI only us-
ing small locations. Parameter estimation methods using traditional approaches
such as those used by the researchers above will produce poor model performance.
To overcome this gap, our idea is using a Bayesian approach for the GSTARI
model parameter estimation method as this exhibits excellent accuracy in pre-
diction even with limited sample numbers [9], [10]. The Bayesian approach also
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has advantages over conventional estimation techniques because the estimator is
asymptotically distribution-free and independent of the distribution of the data
[11]. In the Bayesian approach, a prior must be determined to estimate the pos-
terior parameter distribution. This is an essential difference between estimators
with conventional and Bayesian approaches [12].

Based on the preceding description, we model paddy prices in eight East Java
cities using GSTARI and a Bayesian approach.

2 Material and Methods
2.1 Data

The data used in this research from website of Information System for The Avail-
ability and Price Developments of Staple Foodstuffs in East Java. The data is
bi-weekly rice price in nine cities in East Java; namely, Probolinggo, Mojokerto,
Surabaya, Pasuruan, Madiun, Batu, Kediri, Blitar, Mojokerto. The data period
starts from January 2019 to June 2023, which was accessed from the website
https://siskaperbapo.jatimprov.go.id/.

2.2 GSTARI with Bayesian Estimator

In this article, we explore the GSTARI model using Bayesian parameter estima-
tion. The priors used are Multivariate Normal [19], [20] and Inverse Wishart
distributions [21], [22].

GSTARI(1,1,1) model can be represented as:

Y =®X +¢, (2.1)

where Y = y¢, X = y¢_1, <I>(1i()) + <I>(1?W(1), P = <I>(11()) + <I>(1iiW(1),€ = e(t). In case
of Y; ~ MN(®X;, ), the probability function of Y is

Fnmeom) = o) Hol R ep{ - - @0 - 20} @2

Hence, the probability function of the joint probability Y is
1
FX12.9) [ Eexp {5y - 2/ (y - B} (23

Prior joint probability is expressed as follows

—(fo+n+1)

1 n n
f(®,Q)x|Q"" 2 exp {—itr (Q—legl)} [Vo| 2|92 2. (2.4)
The joined posterior distribution can be expressed as follows:
(@, QY)ocf(Y|®,Q)f(®, ) (2.5)

In other terms, Equation 2.5 is proportional to the product of Equations 2.3 and
2.4.
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3 Results and Discussion
3.1 Checking Stationarity of Data

In space time modelling, the initial stage of analysis involves assessing whether
the data exhibits stationary qualities. Initially, a time series graphic is deployed
at each single area.
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Figure 1: Timeseries Plot

The rice price data plot in nine distinct towns has not yet attained stationarity.
For instance, figure 1 above depicts a stationary plot of four regions. To enhance
this data, the Augmented Dickey-Fuller (ADF) value was examined. The ADF
test for the unit root is used to assess the stationarity of the data at a = 0,05
the confidence level, where H indicates that the data have a unit root and are
not stationary. H; demonstrates that the data lack a unit root and are stationary
[26], [27].

Table 1: ADF Test of The Differencing Data

Location | P-Value | Location | P-Value | Location | P-Value
Kediri 0.028 Probolinggo 0.01 Madiun 0.01
Blitar 0.01 Pasuruan 0.01 Surabaya 0.01

Malang 0.01 Mojokerto 0.01 Batu 0.01

Table 1 contains P-values in all locations are all less than 0.05. This implies
that the data at all regions have satisfied the requirements for stationary condi-
tions, allowing for the progression of data analysis to the following step.

3.2 GSTARI using Bayesian Estimator

The following table presents the results of estimating the GSTARI parameters

(1,1,1) using Ordinary Least Square and Bayesian estimators, respectively.
Using OLS to estimate the parameters of the GSTARI model (1,1,1) yields

p-values that are greater than 0.05. This means that none of the parameters from
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Table 2: GSTARI(1, 1,1) Parameters Using OLS Estimator
Location P P-Value Pqq P-Value
Kediri -0.098 0.991 -0.004 1
Blitar 0.077 0.992 0.430 0.995
Malang -0.125 0.998 -0.065 0.999
Probolinggo -0.343 0.925 0.966 0.996
Pasuruan  -0.472 0.956 0.017 1
Mojokerto  -0.173 0.973 -0.033 1
Madiun -0.321 0.966 0.129 0.999
Surabaya  -0.498 0.984 0.089 0.999
Batu -0.248 0.998 -0.212 0.996

GSTARI (1,1,1) are significant at any location as seen in Table 2. Therefore,
researchers are interested in estimating the GSTARI parameters (1,1) using a
Bayesian approach. The Bayesian method for estimating the GSTARI parameters

Table 3: GSTARI(1, 1, 1) Parameters Using Bayesian
Location Mean ®;5 Credible Int Mean ®;; Credible Int
Kediri -0.012 [-0.0119;-0.0115] 0.454 [0.4537;0.4538
Blitar 0.073 [0.0723;0.0727] 0.434 0.4337;0.4339
Malang -0.012 [-0.0119;-0.0115] 0.454 0.4537;0.4538

]

[ ]

[ ]

Probolinggo  0.039 [0.0389;0.0393] 0422 [0.4217;0.4219]
Pasuruan 0.023 [0.0226;0.0230] 0.470  [0.4699;0.4700]
Mojokerto 0.199 [0.1992;0.1995] 0.359  [0.3587:0.3589]
Madiun 0.048 [0.0475;0.0478] 0427  [0.4265;0.4266]
Surabaya 0.028 [0.0276;0.0280] 0436 [0.4358;0.4360]
Batu 0.061 [0.0610;0.0614] 0476 [0.4765;0.4767]

(1,1,1) indicates that the parameter values ®1yp and ®1; are significant at all
locations. This is evident from the fact that none of the credible interval values
contain 0 as seen in Table 3. The performance of the GSTARI (1,1, 1) model will
then be evaluated by contrasting the RMSE of the OLS and Bayesian estimators
[28], [29]. In this research, AIC was additionally utilized to evaluate the validity
of the model [30, 31, 32] The outcome was compared to the RMSE value. The
following table shows the RMSE and AIC values for the two estimators of GSTARI
(1,1,1).

Table 4 displays that the GSTARI (1, 1,1) model with OLS estimator exhibits
dropped RMSE and AIC values compared to the GSTARI (1,1,1) model with
Bayesian estimator, which is solely generated by the Mojokerto location. In con-
trast, the GSTARI (1,1,1) model using Bayesian estimators at eight sites yields
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Table 4: Comparing OLS and Bayesian GSTARI (1, 1,1)
RMSE AIC

OLS Bayesian OLS Bayesian

Kediri 17.904 2.126%* 457.823 121.218*
Blitar 15.195 14.350* 433.913  424.873*
Malang 10.311 0.966* 374.647 0.515*
Probolinggo  99.522 11.355%* 734.859  391.883*
Pasuruan 89.839 4.338%* 720.687  241.846*
Mojokerto  44.645* 51.402 612.200* 634.469
Madiun 65.414 9.729* 674.555 373.475%
Surabaya 55.696 3.108* 651.147  195.164*
Batu 34.428 8.489%* 557.141 355.927*

Location

much lower RMSE and AIC values compared to GSTARI (1,1, 1) with OLS. These
findings highlight that the GSTARI (1,1,1) model with Bayesian estimator out-
performs the GSTARI (1,1, 1) model with OLS estimator.

4 Conclusion

The rice prices of nine cities in East Java province can be considered as spatiotem-
poral data. A potential statistical model for modeling this data is GSTARI which
involves the Bayesian parameter estimation method. The GSTARI (1, 1,1) model,
which follows a Bayesian estimator, demonstrates statistically significant param-
eter values across all areas when used to model rice prices in East Java. This
contrasts with the condition when using the OLS estimator in which none of the
parameter values at any position exhibit significance. In addition, the GSTARI
(1,1,1) model offers better performance in terms of value when working with the
Bayesian estimator compared to OLS. The RMSE and AIC values of the GSTARI
(1,1,1) model relying on the Bayesian estimator at eight locations are significantly
lower than those of the OLS model. Therefore, it can be inferred that the GSTARI
(1,1,1) model with the Bayesian estimator outperforms the OLS model.
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