
International Journal of Mathematics and
Computer Science, 19(2024), no. 4, 1137–1142

b b

M
CS

Definability of the class of SAS-flat modules

Akeel Ramadan Mehdi, Anwar Rahm Obaid

Department of Mathematics
College of Education

Al-Qadisiyah University
Al-Diwaniya, Iraq

email: akeel.mehdi@qu.edu.iq, edu-math17.14@qu.edu.iq

(Received March 11, 2024, Accepted April 22, 2024,
Published June 1, 2024)

Abstract

Let R be a ring. We study the definability of the class of SAS-flat

right R-modules. Moreover, we give many properties and characteri-

zations of the definability of this class.

1 Introduction

All modules in this paper are unital R-modules, where R stands for an as-
sociative ring with unity. We denote the category of all right (resp. left)
R-modules by Mod-R (resp. R-Mod). A module N is called semiartinian
if soc(N/K) is nonzero, for any proper submodule K of a module N . A
submodule L of a module K is called small of K if L+ B = K, where B is
a submodule of K implies B = K [1]. The notation A ≤sas C is used for
a semiartinian small submodule of C. As usual, M∗ = HomZ(M,Q/Z). A
class F ⊆ Mod-R is called definable if it is closed under direct products, pure
submodules and direct limits (see for example [2]). A pair (F ,G), where F ⊆

Mod-R (resp. G ⊆ R-Mod), is called almost dual pair if for any M ∈ Mod-R,
M ∈ F ⇔ M∗ ∈ G and G is closed under direct products and summands
[2]. In module theory, injectivity and flatness for modules play important

Key words and phrases: SAS-N -flat module, SAS-N -injective module,
Definable class, Semiartinian small submodule.
AMS (MOS) Subject Classifications: 16D40, 16D50, 16D10, 13C11.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net



1138 A. R. Mehdi, A. R. Obaid

roles. Many generalizations of injectivity and flatness of modules appeared
in the literature (for example see, [2], [3], [4], [5], [6], [7], [8], and [9]. In
[3], the concept of SAS-K-injectivity was introduced, where a module C is
called SAS-K-injective (where K ∈ R-Mod) if every left R-homomorphism
from any A ≤sas K into C extends to K. C is called SAS-injective, when
C is SAS-R-injective. In [10], the concept of SAS-N -flat (resp. SAS-flat)
modules were introduced as a proper generalization of N -flat (resp. flat)
module. Let C ∈ Mod-R. Then C is called SAS-N -flat (where N ∈ R-Mod)

if, for every A ≤sas N , the sequence 0 → C ⊗R A
IC⊗iA
−→ C ⊗R N is exact. If a

module C is SAS-R-flat, then C is called SAS-flat. We use SAS-N -F (resp.
SAS-N -I, SAS-F, SAS-I, Inj, Proj, Flat) to denote the class of SAS-N -flat
right (resp. SAS-N -injective left, SAS-flat right, SAS-injective left, injective
left, projective right, flat right) R-modules. The brief symbol c.u.d.p. (resp.
c.u.p.s.) stands for a class F means F is closed under direct products (resp.
pure submodules).

In this paper, we study the definability of the classes SAS-N -F (resp.
SAS-F). Moreover, we give many characterizations and properties of the
definability of these two classes. For instance, we show that if N is finitely
presented, then SAS-N -F is a definable class ⇔ RI is SAS-N -flat, for each
index I ⇔ every finitely generated semiartinian small submodule of N is
finitely presented ⇔ (SAS-N -I)∗ ⊆SAS-N -F. Furthermore, we show that if
a ring R is commutative, SAS-F is definable over R, and SAS-I is c.u.p.s.,
then R is SAS-injective ⇔ HomR(K,L) ∈SAS-I for any flat (resp. projective)
module L (resp. K).

2 Definability of the class of SAS-flat mod-

ules

Proposition 2.1. The pair (SAS-N-F,SAS-N-I) is an almost dual pair.

Proof. The proof follows immediately from [11, Theorem 2.3(1)] and [10,
Theorem 2.3].

The proof of the next corollary follows directly from Proposition 2.1 and
[12, Proposition 4.2.8(1,3)].

Corollary 2.2. The class SAS-N-F is closed under direct limits, direct sums,
pure submodules, pure extensions and pure homomorphic images.

We can easily prove the next result.
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Lemma 2.3. Let A,B ∈ R-Mod. If B is projective and A is SAS-B-
injective, then Ext1(B/K,A) = 0, for all K ≤sas B.

Proposition 2.4. Let N ∈ R-Mod. Consider the following conditions for
SAS-N-F.
(1) SAS-N-F is a definable class.
(2) SAS-N-F is c.u.d.p.
(3) RI ∈ SAS-N-F, for each index I.
(4) All finitely generated semiartinian small submodules of N are finitely
presented.
(5) (SAS-N-I)∗ ⊆SAS-N-F.
(6) (SAS-N-I)∗∗ ⊆SAS-N-I.
(7) (SAS-N-F)∗∗ ⊆SAS-N-F.
Then (1)⇔(2)⇔(7), (5)⇔(6)⇒(7) and (2)⇒(3). If N is a finitely presented
module, then (3)⇒(4). Moreover, the seven statements are equivalent, if N
is a finitely generated free module.

Proof. (1)⇔(2)⇔(7). These follow from Proposition 2.1 and [12, Proposi-
tion 4.3.1].
(5)⇔(6). This follows from Proposition 2.1 and [12, Theorem 4.3.2].
(6)⇒(7). Let U ∈ SAS-N -F. Then [10, Theorem 2.3] implies that, U∗ ∈

SAS-N -I. By (6), U∗∗∗ ∈ SAS-N -I. By [10, Theorem 2.3], U∗∗ ∈ SAS-N -F.
Hence (SAS-N -F)∗∗ ∈ SAS-N -F.
(2)⇒(3). This is clear.
(3)⇒(4). Suppose that N is a finitely presented module. Let K be finitely
generated with K ≤sas N . By (3),

∏
R = RI ∈ SAS-N -F. By [13, Theorem

3.2.22, p. 81], K is finitely presented.
(4)⇒(5). Suppose that N is a finitely generated free module. Let D ∈SAS-
N -I and let L be finitely generated with L ≤sas N . By Lemma 2.3,
Ext1(N/L,D) = 0. By (4), L is finitely presented and thus the sequence

B2
f2
→ B1

α
→ N

π
→ N/L → 0 is exact, where α = if1. Thus N/L is 2-

presented and hence by [14, Lemma 2.7], Tor1(N/L,D∗) ∼= (Ext1(N/L,D))∗ =
0. Therefore, D∗ ∈ SAS-N -F and consequently (SAS-N -I)∗ ⊆SAS-N -F.

Corollary 2.5. The following conditions are equivalent for SAS-F.
(1) SAS-F is a definable class.
(2) SAS-F is c.u.d.p.
(3) RI ∈ SAS-F, for each index I.
(4) All finitely generated semiartinian small left ideals of R are finitely pre-
sented.
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(5) (SAS-I)∗ ⊆SAS-F.
(6) (SAS-I)∗∗ ⊆SAS-I.
(7) (SAS-F)∗∗ ⊆SAS-F.

Proof. These follow by taking N = RR and applying Proposition 2.4.

Theorem 2.6. If a ring R is commutative, then the following conditions are
equivalent for SAS-F.
(1) SAS-F is a definable class.
(2) HomR(D, V ) ∈ SAS-F, for every D ∈ SAS-I and V ∈ Inj.
(3) HomR(D, V ) ∈ SAS-F, for all D, V ∈ Inj.
(4) HomR(D, V ) ∈ SAS-F, for all D ∈ Proj and all V ∈ SAS-F.
(5) HomR(D, V ) ∈ SAS-F, for all D, V ∈ Proj.

Proof. (1)⇒(2). Let D be SAS-injective module and let V be injective mod-
ule. Let U ≤sas R and let U be finitely generated. Since SAS-F is defin-
able, U is finitely presented (by Corollary 2.5). Thus the sequence 0 →

HomR(R/U,D) → HomR(R,D) → HomR(U,D) →Ext2(R/U,D) = 0 is ex-
act. Since V is injective, the exact sequence 0 → HomR(D, V )

⊗
R U →

HomR(D, V )
⊗

R R → HomR(D, V )
⊗

R(R/U) → 0 by [13, Theorem 3.2.11,
p. 78]. So, HomR(D, V ) is SAS-flat (by [10, Corollary 2.7]).
(2)⇒(3). Clear.
(3)⇒(1). For any index set S, we have from [1, Proposition 2.3.4, p. 66] and
[14, Theorem 2.75, p. 92] that (R∗∗)S ∼= (HomR(R

∗, R∗))S. By [15, 11.10 (2),
p. 87] and injectivity of R∗ and (R∗)S, we have (R∗∗)S ∼= HomR(R

∗, (R∗)S) ∈
SAS-F for any index set S. By Corollary 2.2, RS ∈ SAS-F for any index set
S. Thus (1) holds by Corollary 2.5.
(1)⇒(4). Let D ∈ Proj and V ∈ SAS-F. Thus D⊕W ∼= R(S) for some a pro-
jective R-module W . So, HomR(D, V )⊕ HomR(W,V ) ∼= HomR(R

(S), V ) ∼=
(HomR(R, V ))S ∼= V S by [15, 11.10 and 11.11, p. 87 and 88]. But V S is
SAS-flat by (1), thus HomR(D, V ) is SAS-flat.
(4)⇒(5). Clear.
(5)⇒(1). By [15, 11.10 and 11.11, pp. 87, 88] and Corollary 2.5.

Corollary 2.7. For a commutative ring R, the next statement are equivalent
if SAS-I is c.u.p.s. and SAS-F is a definable class.
(1) D ∈ SAS-I.
(2) HomR(D,W ) ∈ SAS-F, for each W ∈ Inj.
(3) D

⊗
R W ∈ SAS-I, for any W ∈ Flat.

Proof. (1)⇒(2). Use Theorem 2.6.
(2)⇒(3). By [15, Theorem 2.75, p. 92], (D ⊗R W )∗ ∼= HomR(D,W ∗) for
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every R-module W . Let W be flat. Then (D ⊗R W )∗ is SAS-flat by (2)
and hence [10, Theorem 2.3] implies that (D ⊗R W )∗∗ is SAS-injective. By
hypothesis, D ⊗R W is SAS-injective.
(3)⇒(1). This follows from the hypothesis and [1, Proposition 2.3.4, p. 66].

Proposition 2.8. The following conditions are equivalent when SAS-F is a
definable class and SAS-I is c.u.p.s.
(1) RR ∈ SAS-I.
(2) If W ∈ Inj, then W ∈ SAS-F.
(3) If D ∈ Flat, then D ∈ SAS-I.

Proof. (1)⇒(2). Use [9, Proposition 4.2].
(2)⇒(3). This follows from the hypothesis and [10, Theorem 2.3].
(3)⇒(1). Since RR is flat, the proof is obvious.

Theorem 2.9. For a commutative ring R, if SAS-I is c.u.p.s. and SAS-F
is definable, then the following conditions are equivalent:
(1) R ∈ SAS-I.
(2) If M ∈ Proj and N ∈ Flat, then HomR(M,N) ∈ SAS-I.
(3) If M,N ∈ Proj, then HomR(M,N) ∈ SAS-I.
(4) If M,N ∈ Inj, then HomR(M,N) ∈ SAS-I.

Proof. (1)⇒(2). This follows from Proposition 2.8 and [15, 11.10 and 11.11,
pp. 87-88].
(2)⇒(3). Clear.
(3)⇒(1). By [15, 11.11, p. 88], R ∼= HomR(R,R) and hence R ∈ SAS-I.
(1)⇒(4). This follows from [13, Theorem 3.2.1, p. 75], Proposition 2.8, and
[11, Proposition 2.7].
(4)⇒(1). Apply [13, Theorem 3.2.1, p. 75], [1, Proposition 2.3.4, p. 66], [14,
Theorem 2.75, p. 92], and Proposition 2.8.
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