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Meixner-Pollaczek polynomials. We derive estimates for the Taylor-

Maclaurin coefficients, specifically |a2| and |a3|. Moreover, we explore

Fekete-Szegö functional problems for functions belonging to these sub-

classes. Furthermore, by focusing on specific parameters in our main

results, we uncover several new discoveries.

1 Preliminaries

Orthogonal polynomials are a specific type of polynomials that satisfy a
unique orthogonality condition when considering a specific weight function
over a given interval. These polynomials have been extensively studied in
various areas of mathematics such as approximation theory, numerical anal-
ysis, and mathematical physics. One of their key features is that they form a
basis for the space of square-integrable functions with respect to the weight
function. This allows for efficient representation and approximation of func-
tions using polynomial expansions. Several well-known families of orthogonal
polynomials exist including Legendre polynomials, Chebyshev polynomials,
Meixner-Pollaczek polynomials, and Jacobi polynomials. Each of these fam-
ilies has its own weight function and orthogonality properties, tailored to
specific applications (see [1, 2]).

Meixner-Pollaczek polynomials are an important type of orthogonal poly-
nomials that have been applied in various areas of mathematics, particu-
larly in probability theory and mathematical physics. These polynomials are
named after mathematicians Wolfgang Meixner and Erwin Pollaczek and are
known for their orthogonality property in relation to a specific weight func-
tion on the real line. Meixner-Pollaczek polynomials are commonly used in
the study of stochastic processes such as random walks and queuing sys-
tems. They are often used as solutions to difference equations or differential
equations with a discrete spectrum. These polynomials have interesting com-
binatorial properties and have been extensively researched due to their con-
nections to special functions including hypergeometric functions and q-series.
The versatility and analytical properties of Meixner-Pollaczek polynomials
make them indispensable tools in the analysis of probabilistic models and
the investigation of spectral properties of differential operators see( [3], [4]).

Let A be the class of all analytic functions Θ defined in the disk U =
{z ∈ C : |z| < 1} and normalized by the conditions Θ(0) = 0 and Θ′(0) = 1.
Therefore, every Θ ∈ A has a Taylor-Maclaurin series expansion of the form:
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Θ(z) = z +

∞
∑

n=2

anz
n, (z ∈ U). (1.1)

Furthermore, let S represent the set of all functions Θ ∈ A that are univalent
in U.

The field of geometric function theory stands to gain significant advan-
tages from the robust tools offered by differential subordination of analytic
functions. The initial differential subordination problem was introduced by
Miller and Mocanu [5], with further references provided in [6]. The com-
prehensive developments in this area have been documented in Miller and
Mocanu’s book [7], including publication dates.

By the Koebe one-quarter theorem [7], every function Θ in the set S has
an inverse Θ−1 defined by

Θ−1(Θ(z)) = z (z ∈ U)

and

Θ(Θ−1(w)) = w (|w| < r0(Θ); r0(Θ) ≥
1

4
)

where

Θ−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function is considered bi-univalent in U if both Θ(z) and Θ−1(z) are uni-
valent in U.

Let Σ represent the class of bi-univalent functions in U, as defined by
equation (1.1). The class Σ includes various examples of functions such as

z

1− z
, log

1

1− z
, log

√

1 + z

1− z
.

However, the familiar Koebe function is not included in the set Σ. More-
over, there are other well-known examples of functions in U, such as

2z − z2

2
and

z

1− z2
,

that are not members of Σ.
In 1933, Fekete and Szegö [8] established a precise upper limit for the

functional ηa22 − a3, where η is a real number (0 ≤ η ≤ 1), applied to a
univalent function Θ. This led to the formulation of the classical Fekete-
Szegö problem or inequality, which aims to determine the optimal bounds
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for this functional across all compact families of functions Θ belonging to A,
regardless of the complex value of η.

2 Bell Distribution andMeixner-Pollaczek poly-

nomials

In 2018, Castellares et al. introduced the Bell distribution [9], which is suit-
able for count data with over-dispersion. The Bell distribution is an improve-
ment over the Bell numbers [10, 11]. The probability density function of a
discrete random variable X, which follows the Bell distribution, is expressed
as:

P(X = m) =
ϑmee

(−ϑ
2)+1

Bm

m!
; m = 1, 2, 3, · · · . (2.1)

where Bm = 1
e

∞
∑

k=0

km

k!
are the Bell numbers, m ≥ 2, and ϑ > 0.

Example of the Bell numbers are B2 = 2,B3 = 5,B4 = 15 and B5 = 52.
Now, we introduce a new power series whose coefficients represent the

probabilities of the Bell distribution

B(ϑ, z) = z +
∞
∑

n=2

ϑn−1Bn

(n− 1)! eϑ2−1
zn, (z ∈ U) , (2.2)

where ϑ > 0.
Next, we consider the linear operator Pϑ : A → A defined by the convo-

lution (or Hadamard product)

Pϑf(z) = B(ϑ, z) ∗ f(z)

= z +

∞
∑

n=2

ϑn−1e1−ϑ2
Bn

(n− 1)!
anz

n, (z ∈ U) ,

= z +
2ϑ

eϑ
2−1

a2z
2 +

5ϑ2

2eϑ2−1
a3z

3 +
15ϑ3

3!eϑ2−1
a4z

4 + · · · , .

(2.3)

The Meixner–Pollaczek polynomials P
(λ)
n (x; Φ) (see [12]) of a real variable

x as coefficients of

Gλ(κ,Φ; z) =
1

(1− zeiΦ)λ−iκ (1− zeiΦ)λ+iκ
=

∞
∑

n=0

P(λ)
n (κ; Φ)zn, (2.4)
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where

P(λ)
n (κ; Φ) =

(2λ)n
n!

einΦ
(

e2iΦ

e2iΦ − 1

)n

2F1

(

−n, λ+ iκ

2λ
1−

1

e2iΦ

)

, (2.5)

are orthogonal with respect to the continuous weight

ω(x; Φ) =
∣

∣Γ(λ+ iκ)
∣

∣

2
e(2Φ−π)κ, (2.6)

On the interval (−∞,∞), for n ∈ N, λ > 0, and 0 < Φ < π, note that the
complex Gamma function in Equation (2.5) takes the form [13]

∣

∣Γ(λ+ iκ)
∣

∣

2
= Γ(λ+ iκ)Γ(λ− iκ).

Special cases:

1) lim
Φ→π

2

P
(α+1

2
)

n (−κ

2Φ
; Φ) is called Laguerre polynomial Lα

n(x).

2) lim
λ→∞

n!λ
−n

2 P
(λ)
n (−κ

√
λ−λ cos Φ
sinΦ

; Φ) is called Hermite polynomial Hn(x).

The Meixner-Pollaczek polynomials can be represented by a three-term
recurrence relation

P(λ)
n (κ; Φ) =

(

κ + α(λ,Φ)
n

)

P
(λ)
n−1(κ; Φ)− C(λ,Φ)

n P
(λ)
n−2(κ; Φ), (2.7)

where

α(λ,Φ)
n :=

λ+ n− 1

tanΦ
; and C(λ,Φ)

n :=
(n− 1)(2λ+ n− 2)

4 sin2Φ
, (2.8)

with P
(λ)
−1 (κ) = 0, P

(λ)
0 (κ) = 1 and α

(λ,π
2
)

n = lim
Φ→π

2

α
(λ,Φ)
n = 0.

The first few polynomials P
(λ)
n (x; δ) are obtained from Equation (13) as

follows (see [14]):

P
(λ)
0 (κ; δ) = 1

P
(λ)
1 (κ; δ) = κ + δλ

P
(λ)
2 (κ; δ) = κ

2 +
(

δλ+ λ+ 1
)

κ − 2δ2λ+ δλ2 + δλ− 2λ

(2.9)

Recently, a group of researchers began investigating subclasses of bi-
univalent functions associated with orthogonal polynomials. Estimates for
the initial coefficients of these functions have been identified. However,
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the challenge of determining precise bounds for the coefficients |an|, (n =
3, 4, 5, · · · ) remains unresolved, as noted in various sources ([15]-[27]).

Several researchers have investigated specific subclasses of analytic func-
tions by using various probability distributions, such as the Pascal, Poisson,
and Borel distributions (see, for example, [28]-[33]). As far as we know, there
have been no previous studies investigating a bi-univalent class of functions
using the Bell Distribution series in combination with the Meixner-Pollaczek
polynomials through the subordination principle. The main objective of this
study is to investigate the properties of bi-univalent functions in relation to
Meixner-Pollaczek polynomials. The investigation starts with the following
definitions.

3 Definition and Examples

In this section, we will define and examine a new subclass of bi-univalent
functions within the unit disk. This will be done by applying the principle
of subordination. To establish this new class, we will make use of the Bell
Distribution and subordination through Meixner-Pollaczek polynomials.

Definition 3.1. Let λ be a positive number. A function Θ ∈ Σ given by (1.1)
is said to be in the class GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

if the following subordinations
are satisfied:

(1− ̺)
Pϑf(z)

z
+ ̺(Pϑf(z))

′ ≺ Gλ(κ,Φ; z) (3.1)

(1− ̺)
Pϑg(w)

w
+ ̺(Pϑg(w))

′ ≺ Gλ(κ,Φ;w), (3.2)

The function g(w), defined by (1.2), is given when x is in the inter-
val [−1, 1], ̺ ≥ 0 and 0 < Φ < π. The Meixner-Pollaczek polynomials
Gλ(κ,Φ; z) are given by (2.4).

Example 3.2. Let λ be a positive number. A function Θ ∈ Σ given by (1.1)
is said to be in the class GΣ

(

ϑ, 0,Gλ(κ,Φ; z)
)

if the following subordinations
are satisfied:
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Pϑf(z)

z
≺ Gλ(κ,Φ; z) (3.3)

Pϑg(w)

w
≺ Gλ(κ,Φ;w), (3.4)

The function g(w), defined by (1.2), is given when x is in the interval
[−1, 1] and 0 < Φ < π. The Meixner-Pollaczek polynomials Gλ(κ,Φ; z) are
given by (2.4).

Example 3.3. Let λ be a positive number. A function Θ ∈ Σ given by (1.1)
is said to be in the class GΣ

(

ϑ, 1,Gλ(κ,Φ; z)
)

if the following subordinations
are satisfied:

(Pϑf(z))
′ ≺ Gλ(κ,Φ; z) (3.5)

(Pϑg(w))
′ ≺ Gλ(κ,Φ;w), (3.6)

The function g(w), defined by (1.2), is given when x is in the interval
[−1, 1] and 0 < Φ < π. The Meixner-Pollaczek polynomials Gλ(κ,Φ; z) are
given by (2.4).

4 Coefficient bounds of the class GΣ(κ, δ, λ)

First, let’s provide the coefficient estimates for the class GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

as defined in Definition 3.3.

Theorem 4.1. Let Θ ∈ Σ given by (1.1) belong to the class GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

.
Then

|a2| ≤
eϑ

2
−1

ϑ

∣

∣κ + δλ
∣

∣

√

2 (κ + δλ)
√

√

√

√

√

∣

∣

∣

(

5(1 + 2̺)eϑ
2−1 − 8(1 + ̺)2

)

κ2 +
(

10δλ(1 + 2̺)eϑ
2−1 − 8(δλ+ λ+ 1)(1 + ̺)2

)

κ

+8(1 + ̺)2
(

2δ2λ− δλ2 − δλ+ 2λ
)∣

∣

∣
.

and

|a3| ≤

(

eϑ
2−1
)2

(κ + δλ)2

4(1 + ̺)2ϑ2
+

2eϑ
2−1|κ + δλ|

5(1 + 2̺)ϑ2
.
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Proof. Let Θ ∈ GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

. According to Definition 3.3, there
exist analytic functions w and v such that w(0) = v(0) = 0 and |w(z)| < 1.
If |v(w)| < 1 for all z, w ∈ U, we can express this as follows:

(1− ̺)
Pϑf(z)

z
+ ̺(Pϑf(z))

′ = Gλ(κ,Φ;w(z)) (4.1)

and

(1− ̺)
Pϑg(w)

w
+ ̺(Pϑg(w))

′ = Gλ(κ,Φ; v(w)), (4.2)

From the equalities (4.1) and (4.2), we obtain

(1−̺)
Pϑf(z)

z
+̺(Pϑf(z))

′ = 1+P
(λ)
1 (κ; δ)c1z+

[

P
(λ)
1 (κ; δ)c2 + P

(λ)
2 (κ; δ)c21

]

z2+· · ·

(4.3)
and

(1−̺)
Pϑg(w)

w
+̺(Pϑg(w))

′ = 1+P
(λ)
1 (κ; δ)d1w+

[

P
(λ)
1 (κ; δ)d2 + P

(λ)
2 (κ; δ)d21

]

)w2+· · · .

(4.4)
It is widely known that if

|w(z)| =
∣

∣c1z + c2z
2 + c3z

3 + · · ·
∣

∣ < 1, (z ∈ U)

and
|v(w)| =

∣

∣d1w + d2w
2 + d3w

3 + · · ·
∣

∣ < 1, (w ∈ U),

then
|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (4.5)

Thus, upon comparing the corresponding coefficients in (4.3) and (4.4), we
have

2(1 + ̺)ϑ

eϑ
2−1

a2 = P
(λ)
1 (κ; δ)c1, (4.6)

5(1 + 2̺)ϑ2

2eϑ2−1
a3 = P

(λ)
1 (κ; δ)c2 + P

(λ)
2 (κ; δ)c21, (4.7)

and

−
2(1 + ̺)ϑ

eϑ
2−1

a2 = P
(λ)
1 (κ; δ)d1, (4.8)

5(1 + 2̺)ϑ2

2eϑ2−1

(

2a22 − a3
)

= P
(λ)
1 (κ; δ)d2 + P

(λ)
2 (κ; δ)d21, (4.9)
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From (4.6) and (4.8), it follows that

c1 = −d1 (4.10)

and

2

(

2(1 + ̺)ϑ

eϑ
2−1

)2

a22 =
[

P
(λ)
1 (κ; δ)

]2
(

c21 + d21
)

c21 + d21 =
8(1 + ̺)2ϑ2

(eϑ2−1)
2
[

P
(λ)
1 (κ; δ)

]2 a
2
2.

(4.11)

If we add (4.7) and (4.9), we get

5(1 + 2̺)ϑ2

eϑ
2−1

a22 = P
(λ)
1 (κ; δ) (c2 + d2) + P

(λ)
2 (κ; δ)

(

c21 + d21
)

. (4.12)

By substituting the value of (c21 + d21) from equation (4.11) into the right-
hand side of equation (4.12), we can deduce that.






5(1 + 2̺)−

8(1 + ̺)2P
(λ)
2 (κ; δ)

(eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2







ϑ2

eϑ
2−1

a22 = P
(λ)
1 (κ; δ) (c2 + d2)

a22 =

(

eϑ
2−1
)2 [

P
(λ)
1 (κ; δ)

]3

ϑ2

(

5(1 + 2̺) (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 8(1 + ̺)2P
(λ)
2 (κ; δ)

) (c2 + d2)

(4.13)

Moreover, computations using (2.9), (4.5) and (4.13), yield that

|a2| ≤
eϑ

2
−1

ϑ

∣

∣κ + δλ
∣

∣

√

2 (κ + δλ)
√

√

√

√

√

∣

∣

∣

(

5(1 + 2̺)eϑ
2−1 − 8(1 + ̺)2

)

κ2 +
(

10δλ(1 + 2̺)eϑ
2−1 − 8(δλ+ λ+ 1)(1 + ̺)2

)

κ

+8(1 + ̺)2
(

2δ2λ− δλ2 − δλ+ 2λ
)∣

∣

∣
.

Furthermore, if we subtract (4.9) from (4.7), we obtain

5(1 + 2̺)ϑ2

eϑ
2−1

(

a3 − a22
)

= P
(λ)
1 (κ; δ) (c2 − d2) + P

(λ)
2 (κ; δ)

(

c21 − d21
)

. (4.14)



1086 A. Alsoboh, A. Amourah, J. Salah

Then, in view of (4.5) and (4.11), Eq. (4.14) becomes

a3 =

(

eϑ
2−1
)2 [

P
(λ)
1 (κ; δ)

]2

8(1 + ̺)2ϑ2

(

c21 + d21
)

+
eϑ

2−1P
(λ)
1 (κ; δ)

5(1 + 2̺)ϑ2
(c2 − d2)

Thus, applying (2.9) and (4.5), we conclude that

|a3| ≤

(

eϑ
2−1
)2

(κ + δλ)2

4(1 + ̺)2ϑ2
+

2eϑ
2−1|κ + δλ|

5(1 + 2̺)ϑ2
.

This completes the proof of Theorem.

By using the values of a22 and a3, we can show the Fekete-Szegö inequality
for functions in the class GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

.

Theorem 4.2. Let Θ ∈ Σ given by (1.1) belong to the class GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

.
Then, we have

∣

∣

∣
a3 − µa22

∣

∣

∣
≤















2eϑ
2
−1|κ+δλ|

5(1+2̺)ϑ2 , |1− µ| ≤ Q(̺,κ, λ, δ, ϑ),

2 |κ + δλ| |K(µ)| , |1− µ| ≥ Q(̺,κ, λ, δ, ϑ),

where

Q(̺,κ, λ, δ, ϑ) =

∣

∣

∣

∣

∣

1−
8(1 + ̺)2

(

κ2 +
(

δλ+ λ+ 1
)

κ − 2δ2λ+ δλ2 + δλ− 2λ
)

5(1 + 2̺)eϑ2−1 (κ + δλ)2

∣

∣

∣

∣

∣

,

and

K(µ) =
eϑ

2−1
[

P
(λ)
1 (κ; δ)

]2

(1− µ)

ϑ2

(

5(1 + 2̺) (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 8(1 + ̺)2P
(λ)
2 (κ; δ)

) .

Proof. From (4.13) and (4.14)

a3 − µa22 =
eϑ

2−1P
(λ)
1 (κ; δ)

5(1 + 2̺)ϑ2
(c2 − d2)

+
(1− µ)

(

eϑ
2−1
)2 [

P
(λ)
1 (κ; δ)

]3

(c2 + d2)

ϑ2

(

5(1 + 2̺) (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 8(1 + ̺)2P
(λ)
2 (κ; δ)

)

= P
(λ)
1 (κ; δ)

([

K(µ) +
eϑ

2−1

5(1 + 2̺)ϑ2

]

c2 +

[

K(µ)−
eϑ

2−1

5(1 + 2̺)ϑ2

]

d2

)

,
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where

K(µ) =

(

eϑ
2−1
)2 [

P
(λ)
1 (κ; δ)

]2

(1− µ)

ϑ2

(

5(1 + 2̺) (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 8(1 + ̺)2P
(λ)
2 (κ; δ)

) ,

Then, in view of (2.9), we conclude that

∣

∣

∣
a3 − µa22

∣

∣

∣
≤



















2eϑ
2
−1

∣

∣

∣
P(λ)
1 (κ;δ)

∣

∣

∣

5(1+2̺)ϑ2 , |K(µ)| ≤ eϑ
2
−1

5(1+2̺)ϑ2 ,

2
∣

∣

∣
P

(λ)
1 (κ; δ)

∣

∣

∣
|K(µ)| , |K(µ)| ≥ eϑ

2
−1

5(1+2̺)ϑ2 .

Which completes the proof of Theorem 4.2.

5 Corollaries and Consequences

Theorems 4.1 and 4.2 yield a result that closely aligns with Examples 3.2
and 3.3.

Corollary 5.1. Let Θ ∈ Σ given by (1.1) belong to the class GΣ

(

ϑ, 0,Gλ(κ,Φ; z)
)

.
Then

|a2| ≤
eϑ

2
−1

ϑ

∣

∣κ + δλ
∣

∣

√

2 (κ + δλ)
√

√

√

√

√

∣

∣

∣

(

5eϑ
2−1 − 8

)

κ2 +
(

10δλeϑ
2−1 − 8(δλ+ λ+ 1)

)

κ

+8
(

2δ2λ− δλ2 − δλ+ 2λ
)∣

∣

∣
.

|a3| ≤

(

eϑ
2−1
)2

(κ + δλ)2

4ϑ2
+

2eϑ
2−1|κ + δλ|

5ϑ2
.

and

∣

∣

∣
a3 − µa22

∣

∣

∣
≤











2eϑ
2
−1|κ+δλ|
5ϑ2 , |1− µ| ≤ Q(0,κ, λ, δ, ϑ),

2 |κ + δλ| |K(µ)| , |1− µ| ≥ Q(0,κ, λ, δ, ϑ),

where

Q(0,κ, λ, δ, ϑ) =

∣

∣

∣

∣

∣

1−
8
(

κ
2 +

(

δλ+ λ+ 1
)

κ − 2δ2λ+ δλ2 + δλ− 2λ
)

5eϑ2−1 (κ + δλ)2

∣

∣

∣

∣

∣

,
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and

K(µ) =
eϑ

2−1
[

P
(λ)
1 (κ; δ)

]2

(1− µ)

ϑ2

(

5 (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 8P
(λ)
2 (κ; δ)

) .

Corollary 5.2. Let Θ ∈ Σ given by (1.1) belong to the class GΣ

(

ϑ, 1,Gλ(κ,Φ; z)
)

.
Then

|a2| ≤
eϑ

2
−1

ϑ

∣

∣κ + δλ
∣

∣

√

2 (κ + δλ)
√

√

√

√

√

∣

∣

∣

(

15eϑ
2−1 − 32

)

κ2 +
(

30δλeϑ
2−1 − 32(δλ+ λ+ 1)

)

κ

+32
(

2δ2λ− δλ2 − δλ+ 2λ
)∣

∣

∣
.

|a3| ≤

(

eϑ
2−1
)2

(κ + δλ)2

16ϑ2
+

2eϑ
2−1|κ + δλ|

15ϑ2
.

and

∣

∣

∣
a3 − µa22

∣

∣

∣
≤











2eϑ
2
−1|κ+δλ|
15ϑ2 , |1− µ| ≤ Q(1,κ, λ, δ, ϑ),

2 |κ + δλ| |K(µ)| , |1− µ| ≥ Q(1,κ, λ, δ, ϑ),

where

Q(1,κ, λ, δ, ϑ) =

∣

∣

∣

∣

∣

1−
32
(

κ2 +
(

δλ+ λ+ 1
)

κ − 2δ2λ+ δλ2 + δλ− 2λ
)

15eϑ2−1 (κ + δλ)2

∣

∣

∣

∣

∣

,

and

K(µ) =
eϑ

2−1
[

P
(λ)
1 (κ; δ)

]2

(1− µ)

ϑ2

(

15 (eϑ2−1)
[

P
(λ)
1 (κ; δ)

]2

− 32P
(λ)
2 (κ; δ)

) .

6 Concluding Remarks

In this paper, we have introduced and investigated the coefficient problems
of a new subclass of bi-univalent functions. This subclass is referred to
as GΣ

(

ϑ, ̺,Gλ(κ,Φ; z)
)

and is closely related to the Bell distribution and
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Meixner-Pollaczek polynomials. We have obtained estimates for the Taylor-
Maclaurin coefficients |a2| and |a3|, as well as the Fekete-Szegö functional
problems for functions belonging to this new subclass.

The research paper explores the connection between the Bell distribution
and Meixner-Pollaczek polynomials with specific families. This finding could
potentially stimulate further research in other areas, such as the estimates
on bound of |an| for n ≥ 4;n ∈ N for the classes that have been introduced
here.
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