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Abstract

In this paper, we present a novel qualitative class of analytic and

bi-univalent functions associated with Jacobi polynomials. Moreover,

we establish bounds on coefficients for functions within this class and

address the Fekete-Szegö problem. Furthermore, exploring the param-

eters in our primary findings yields a diverse array of new results.

1 Introduction and preliminaries

In 1784, Legendre [1] introduced orthogonal polynomials which are frequently
used in solving ordinary differential equations with specific model constraints
and which play a crucial role in approximation theory [2].
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Two polynomials Yn and Ym of order n and m, respectively, are said to
be orthogonal if

∫ ι

ǫ

Yn(x)Ym(x)v(x)dx = 0, for n 6= m, (1.1)

Assuming v(x) is non-negative in the interval (ǫ, ι), all polynomials of finite
order Yn(x) possess a clearly defined integral. Jacobi polynomials belong to
the category of orthogonal polynomials.

In this paper, we analytically examine a newly defined subclassBΣ(α, β, x)
of bi-univalent functions utilizing Jacobi polynomials.

Let A represent the class of analytic functions Θ in the open unit disk U =
{z ∈ C : |z| < 1}, normalized with Θ(0) = 0 and Θ′(0) = 1. Consequently,
each Θ ∈ A can be expressed as:

Θ(z) = z + a2z
2 + a3z

3 + · · · , (z ∈ U). (1.2)

Moreover, the set of all univalent functions Θ ∈ A is denoted by S (for
more information, the reader is referred to [3]).

The field of geometric function theory stands to gain significant advan-
tages from the robust tools offered by differential subordination of analytic
functions. The initial differential subordination problem was introduced by
Miller and Mocanu [4], with further references provided in [5]. The com-
prehensive developments in this area have been documented in Miller and
Mocanu’s book [6], including publication dates.

It is well established that for an analytic and univalent function Θ(z)
mapping a domain D1 onto a domain D2, the inverse function g(z) = Θ−1(z)
is defined as

g (Θ(z)) = z, (z ∈ D1),

is analytic and univalent. Moreover, (see [3]), every function Θ ∈ S has an
inverse map Θ−1 satisfying

Θ−1(Θ(z)) = z (z ∈ U),

and

Θ
(

Θ−1(̟)
)

= ̟

(

|̟| < r0(Θ); r0(Θ) ≥
1

4

)

.

In fact, the inverse function is given by

Θ−1(̟) = ̟ − a22̟ + (2a22 − a3)̟
3 − (5a32 − 5a2a3 + a4)̟

4 + · · · . (1.3)



Jacobi polynomials and bi-univalent functions 959

A function Θ ∈ A is bi-univalent in U if both Θ(z) and Θ−1(z) are
univalent in U. Let Σ represent the class of bi-univalent functions in U as
defined in (1.2). For further details on the class Σ, the interested reader is
referred to [7, 8, 9, 10, 11, 12, 13, 14, 15].

For nonnegative n, n+ϑ, n+ς, a generating function of Jacobi polynomials
is defined by

Jn(x, z) = 2ϑ+ςR−1 (1− x+R)−ϑ (1 + x+R)−ς
,

where R = R(x, z) = (1 − 2zx + x2)0.5, ϑ > −1, ς > −1, x ∈ [−1, 1] and
z ∈ U, (see [16]).

For a fixed x, the function Jn(x, z) is analytic in U and so is represented
by a Taylor series expansion as follows:

Jn(x, z) =

∞
∑

n=0

P (ϑ,ς)
n (x)zn, (1.4)

where P
(ϑ,ς)
n (x) is Jacobi polynomial of degree n.

The Jacobi polynomial P
(ϑ,ς)
n (x) satisfies a second-order linear homoge-

neous differential equation:

(1− x2)y′′ + (ς − ϑ− (ϑ+ ς + 2)x)y′ + n(n + ϑ+ ς + 1)y = 0.

Jacobi polynomials can alternatively be characterized by the following
recursive relationships:

P (ϑ,ς)
n (x) = (an−1z − bn−1)P

(ϑ,ς)
n−1 (x)− cn−1P

(ϑ,ς)
n−2 (x), n > 2,

where an = (2n+ϑ+ς+1)(2n+ϑ+ς+2)
2(n+1)(n+ϑ+ς+1)

, bn =
(2n+ϑ+ς+1)(ς2−ϑ2)

2(n+1)(n+ϑ+ς+1)(2n+ϑ+ς)
and cn = (2n+ϑ+ς+2)(n+ϑ)(n+ς)

(n+1)(n+ϑ+ς+1)(2n+ϑ+ς)
,

with the initial values

P
(ϑ,ς)
0 (x) = 1, P

(ϑ,ς)
1 (x) = (ϑ+ 1) +

1

2
(ϑ+ ς + 2)(x− 1) and (1.5)

P
(ϑ,ς)
2 (x) =

(ϑ+ 1) (ϑ+ 2)

2
+

1

2
(ϑ+ 2) (ϑ+ ς + 3)(x− 1) +

1

8
(ϑ+ ς + 3)(ϑ+ ς + 4)(x− 1)2.

To begin, we introduce certain special instances of the polynomials P
(ϑ,ς)
n :

1. For ϑ = ς = 0, we get the Legendre Polynomials.
2. For ϑ = ς = −0.5, this results in the Chebyshev Polynomials of the

first kind.
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3. For ϑ = ς = 0.5, this results in the Chebyshev Polynomials of the
second kind.

4. For ϑ = ς, we get the Gegenbauer Polynomials and each is replaced
by (ϑ− 0.5).

Ezrohi [17] introduced the class U(ε) as follows:

U(ε) = {Θ : Θ ∈ S and Re {Θ′(z)} > ε, (z ∈ U; 0 ≤ ε < 1)} .

In recent times, numerous scholars have delved into the realm of bi-
univalent functions linked to orthogonal polynomials. Notable references
in this area include [18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29]. However, when
it comes to Jacobi polynomials, to the best of our knowledge, there has been
a dearth of research on bi-univalent functions in the existing literature. The
primary objective of this paper is to kickstart an investigation into the char-
acteristics of bi-univalent functions associated with Jacobi polynomials. To
achieve this objective, we will consider the following definitions.

2 Definition

Definition 2.1 characterizes a class of bi-univalent functions, which are closed
to convex, in terms of Jacobi polynomials.

Definition 2.1. Let ϑ > −1, ς > −1, x ∈ (1
2
, 1] and n, n + ϑ, n + ς be

nonnegative integers. A function Θ ∈ Σ given by (1.2) is said to be in the
class BΣ(ϑ, ς, x) if the following subordinations are satisfied:

Θ′(z) ≺ Jn(x, z) (2.1)

and
g′(̟) ≺ Jn(x,̟), (2.2)

where the function Jn is given by (1.4) and the function g(̟) = Θ−1(̟) is
defined by (1.3).

Unless otherwise mentioned, we assume that ϑ > −1, ς > −1, x ∈ (1
2
, 1]

and n, n + ϑ, n+ ς are nonnegative integers.
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3 Coefficient bounds of the subclass BΣ(ϑ, ς, x)

In this section, our focus is on determining initial coefficient bounds for the
subclass BΣ(ϑ, ς, x).

Theorem 3.1. Let f ∈ Σ given by (1.2) belong to the class BΣ(ϑ, ς, x). Then

|a2| ≤

∣

∣(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

∣

∣

√

∣

∣(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

∣

∣

√

3− 2Υ(x, ϑ, ς)
,

and

|a3| ≤

[

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

]2

4
+

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

3
,

where

Υ(x, ϑ, ς) = (ϑ+ 1) (ϑ+ 2)+(ϑ+ 2) (ϑ+ς+3)(x−1) +
1

4
(ϑ+ς+3)(ϑ+ς+4)(x−1)2.

Proof. Suppose Θ ∈ BΣ(ϑ, ς, x). According to equations (2.1) and (2.2),
for all z,̟ ∈ U and analytic functions r and s with r(0) = s(0) = 0 and
|r(z)| < 1, |s(̟)| < 1, we have:

Θ′(z) = Jn(x, r(z)) (3.1)

and

g′(̟) = Jn(x, s(̟)). (3.2)

Thus

Θ′(z) = 1 + P
(ϑ,ς)
1 (x)b1z +

[

P
(ϑ,ς)
1 (x)b2 + P

(ϑ,ς)
2 (x)b21

]

z2 + · · · (3.3)

and

g′(̟) = 1 + P
(ϑ,ς)
1 (x)d1̟ +

[

P
(ϑ,ς)
1 (x)d2 + P

(ϑ,ς)
2 (x)d21

]

)̟2 + · · · . (3.4)

It is well known that if

|r(z)| =
∣

∣b1z + b2z
2 + b3z

3 + · · ·
∣

∣ < 1, (z ∈ U)
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and
|s(̟)| =

∣

∣d1̟ + d22̟ + d33̟ + · · ·
∣

∣ < 1, (̟ ∈ U),

then
|bj | ≤ 1 and |dj| ≤ 1 for all j ∈ N. (3.5)

Comparing the coefficients in (3.3) and (3.4), we get

2a2 = P
(ϑ,ς)
1 (x)b1, (3.6)

3a3 = P
(ϑ,ς)
1 (x)b2 + P

(ϑ,ς)
2 (x)b21, (3.7)

−2a2 = P
(ϑ,ς)
1 (x)d1, (3.8)

and
3
[

2a22 − a3
]

= P
(ϑ,ς)
1 (x)d2 + P

(ϑ,ς)
2 (x)d21. (3.9)

From (3.6) and (3.8), it follows that

b1 = −d1 (3.10)

and

8a22 =
[

P
(ϑ,ς)
1 (x)

]2
(

b21 + d21
)

. (3.11)

If we add (3.7) and (3.9), we get

6a22 = P
(ϑ,ς)
1 (x) (b2 + d2) + P

(ϑ,ς)
2 (x)

(

b21 + d21
)

. (3.12)

Substituting the value of (b21 + d21) from (3.11) into the right hand side of
(3.12), we get

2






3−

4P
(ϑ,ς)
2 (x)

[

P
(ϑ,ς)
1 (x)

]2






a22 = P

(ϑ,ς)
1 (x) (b2 + d2) . (3.13)

Using (1.5), (3.5) and (3.13), we find that

|a2| ≤

∣

∣(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

∣

∣

√

∣

∣(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

∣

∣

√

3− 2Υ(x, ϑ, ς)
,

where

Υ(x, ϑ, ς) = (ϑ+ 1) (ϑ+ 2)+(ϑ+ 2) (ϑ+ς+3)(x−1) +
1

4
(ϑ+ς+3)(ϑ+ς+4)(x−1)2.
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Moreover, if we subtract (3.9) from (3.7), we get

6
(

a3 − a22
)

= P
(ϑ,ς)
1 (x) (b2 − d2) + P

(ϑ,ς)
2 (x)

(

b21 − d21
)

. (3.14)

In view of (3.11) and (3.14),

a3 =

[

P
(ϑ,ς)
1 (x)

]2

8

(

b21 + d21
)

+
P

(ϑ,ς)
1 (x)

6
(b2 − d2) .

Applying (1.5) and (3.5), we have

|a3| ≤

[

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

]2

4
+

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

3
.

Thee proof is complete.

4 Fekete–Szegö problem for the subclass BΣ(ϑ, ς, x)

A prominent issue concerning coefficients of univalent analytic functions is
the Fekete-Szegő inequality. Initially proposed by [25], it asserts that for
Θ ∈ Σ, where Σ denotes

|a3 − τa22| ≤ 1 + 2e−2τ/(1−µ).

When τ is real, this bound is sharp.
In this section, for functions in the class BΣ(ϑ, ς, x) we provide Fekete–

Szegö inequalities.

Theorem 4.1. Let Θ ∈ Σ given by (1.2) belong to the class BΣ(ϑ, ς, x).
Then

∣

∣a3 − τa22
∣

∣

≤



































|(ϑ+1)+ 1
2
(ϑ+ς+2)(x−1)|
3

,

|1−τ ||(ϑ+1)+ 1
2
(ϑ+ς+2)(x−1)|

3











3
[

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

]2

−2

(

(ϑ+ 1) (ϑ+ 2) + (ϑ+ 2) (ϑ+ ς + 3)(x− 1)
+1

4
(ϑ+ ς + 3)(ϑ+ ς + 4)(x− 1)2

)











,

|τ − 1| ≤ k(x)

|τ − 1| ≥ k(x)
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where

k(x) =

∣

∣

∣

∣

∣

∣

1−
4
[

(ϑ+1)(ϑ+2)
2

+ 1
2
(ϑ+ 2) (ϑ+ ς + 3)(x− 1) + 1

8
(ϑ+ ς + 3)(ϑ+ ς + 4)(x− 1)2

]

3
[

(ϑ+ 1) + 1
2
(ϑ+ ς + 2)(x− 1)

]2

∣

∣

∣

∣

∣

∣

.

Proof. From (3.13) and (3.14)

a3 − τa22

=
(1− τ)

[

P
(ϑ,ς)
1 (x)

]3

(b2 + d2)

2

[

3
[

P
(ϑ,ς)
1 (x)

]2

− 4P
(ϑ,ς)
2 (x)

] +
P

(ϑ,ς)
1 (x)

6
(b2 − d2)

= P
(ϑ,ς)
1 (x)

[(

h(τ) +
1

6

)

b2 +

(

h(τ)−
1

6

)

d2

]

,

where

h(τ) =
(1− τ)

[

P
(ϑ,ς)
1 (x)

]2

2

[

3
[

P
(ϑ,ς)
1 (x)

]2

− 4P
(ϑ,ς)
2 (x)

] ,

In view of (1.5), we have

∣

∣a3 − τa22
∣

∣ ≤















∣

∣

∣
P

(ϑ,ς)
1 (x)

∣

∣

∣

3

2
∣

∣

∣
P

(ϑ,ς)
1 (x)

∣

∣

∣
|h(τ)|

0 ≤ |h(τ)| ≤ 1
6
,

|h(τ)| ≥ 1
6
.

The proof is now complete.

5 Corollaries and Consequences

In this section, we use our main results to derive each of the new corollaries
and implications that follow.

Corollary 5.1. Let Θ ∈ Σ given by (1.2) belong to the class BΣ(ϑ, ϑ, x) =
BΣ(ϑ, x). Then

|a2| ≤
|(ϑ+ 1) + (ϑ+ 1)(x− 1)|

√

|(ϑ+ 1) + (ϑ+ 1)(x− 1)|
√

3− 2Υ(x, ϑ, ς)
,
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|a3| ≤
[(ϑ+ 1) + (ϑ+ 1)(x− 1)]2

4
+

(ϑ+ 1) + (ϑ+ 1)(x− 1)

3
,

and
∣

∣a3 − τa22
∣

∣

≤































|(ϑ+1)+(ϑ+1)(x−1)|
3

,

|1−τ ||(ϑ+1)+(ϑ+1)(x−1)|3










3 [(ϑ+ 1) + (ϑ+ 1)(x− 1)]2

−2

(

(ϑ+ 1) (ϑ+ 2) + (ϑ+ 2) (2ϑ+ 3)(x− 1)
+1

2
(2ϑ+ 3)(ϑ+ 2)(x− 1)2

)











,
|τ − 1| ≤ Θ(x)

|τ − 1| ≥ Θ(x)

where

Υ(x, ϑ, ς) = (ϑ+ 1) (ϑ+ 2)+(ϑ+ 2) (2ϑ+3)(x−1) +
1

2
(2ϑ+3)(ϑ+2)(x−1)2,

and

Θ(x) =

∣

∣

∣

∣

∣

∣

1−
4
[

(ϑ+1)(ϑ+2)
2

+ 1
2
(ϑ+ 2) (2ϑ+ 3)(x− 1) + 1

4
(2ϑ+ 3)(ϑ+ 2)(x− 1)2

]

3 [(ϑ+ 1) + (ϑ+ 1)(x− 1)]2

∣

∣

∣

∣

∣

∣

Corollary 5.2. Let Θ ∈ Σ given by (1.2) belong to the class BΣ(0, 0, x) =
BΣ(x). Then

|a2| ≤
|1 + (x− 1)|

√

|1 + (x− 1)|
√

3− 2(2 + 6(x− 1) + 3(x− 1)2)
,

|a3| ≤
[1 + (x− 1)]2

4
+

1 + (x− 1)

3
,

and
∣

∣a3 − τa22
∣

∣

≤































|1+(x−1)|
3

,

|1−τ ||1+(x−1)|3










3 [1 + (x− 1)]2

−2

(

2 + 6(x− 1)
+3(x− 1)2

)











,
|τ − 1| ≤ Q(x)

|τ − 1| ≥ Q(x)

where

Q(x) =

∣

∣

∣

∣

∣

1−
4
[

1 + 3(x− 1) + 3
2
(x− 1)2

]

3 [1 + (x− 1)]2

∣

∣

∣

∣

∣

.
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6 Concluding Remark

In this study, we presented and explored the coefficient-related concerns asso-
ciated with the newly introduced subclasses BΣ(ϑ, ς, x), BΣ(ϑ, x), and BΣ(x)
within the bi-univalent functions class defined in the open unit disk U. Our
investigation involved estimating the Fekete-Szegő functional problems and
the Maclaurin coefficients |a2| and |a3| for functions within each of these bi-
univalent function subclasses. Moreover, the specialization of parameters in
our main results yielded numerous novel findings.
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