International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1231–1236

Distance Independence Polynomial of Graphs

Amelia L. Arriesgado¹, Jeffrey Imer C. Salim²

¹Mathematics and Natural Science Department College of Arts and Sciences Bohol Island State University Tagbilaran City, Philippines

²Mathematics and Sciences Department College of Arts and Sciences Mindanao State University Tawi-Tawi College of Technology and Oceanography Tawi-Tawi, Philippines

> email: amelia.arriesgado@bisu.edu.ph jeffreyimersalim@msutawi-tawi.edu.ph

(Received January 17, 2024, Accepted May 21, 2024, Published June 1, 2024)

Abstract

In this paper, we examine properties of points in a discrete structure by considering the independent sets with respect to proximity of points. Moreover, we represent properties in a bivariate polynomial which counts the number of subsets with a given proximity property.

1 Introduction

The study of graph representations in terms of polynomials captured the interests of discrete mathematicians because of their contributions in the area of Biology, Physics and Chemistry [4]. Independence polynomial was investigated by Hoede and Li [6] in 1994. This polynomial represents the

Key words and phrases: Independent set, distance independence polynomial.

AMS (MOS) Subject Classifications: 05C25, 05C30, 05C31. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net independent subsets in a graph. Many studies had been explored by considering substructures of a given graph.

An interesting work by Maldo and Artes [7] explored on the geodetic independence polynomial of graphs and used the Chuh-Shih-Chieh's Identity in establishing the polynomials. Recent work of Artes et al. [2] established some properties of polynomials representing geodetic closures. Also, Villarta et al. [8] pioneered the work on induced path polynomials and established results for graphs under some binary operations.

In this present work, we introduce a polynomial representation as a bivariate polynomial by considering the distribution property of vertices in a given independent set.

A subset S of V(G) is said to be *independent* in G if the elements of S are pairwise non-adjacent in G. This means that for any two vertices $u, v \in S$, $uv \notin E(G)$. In this case, we call S an *independent set* (with respect to graph G) [1].

2 Preliminary Notions

Distance independence in graphs is a generalization of independence concept in graphs. Let k be a natural number greater than 1. A subset S of V(G) is a d_k -independent set in G if for every pair of distinct vertices $(u, v) \in S \times S$, $d_G(u, v) \geq k$. The d_k -independence polynomial of G is given by

$$I_k(G; x, y) = \sum_{i=2}^{\alpha_k(G)} \alpha_{ik}(G) x^i y^k = y^k \sum_{i=2}^{\alpha_k(G)} a_{ik}(G) x^i$$

where $\alpha_{ik}(G)$ is the number d_k -independent subsets of G of cardinality *i*. The distance independence polynomial of G is given by

$$\Gamma_{di}(G; x, y) = \sum_{k=2}^{diam(G)} \sum_{i=2}^{\alpha_k(G)} \alpha_{ik}(G) x^i y^k$$

where $\alpha_{ik}(G)$ is the number of d_k -independent subsets of G of cardinality i, $\alpha_k(G)$ is the d_k -independence number of G, and diam(G) is the diameter of G.

Hence, we have

$$\Gamma_{di}(G; x, y) = \sum_{k=2}^{diam(G)} I_k(G; x, y)$$

Distance Independence Polynomial of Graphs

If the diameter of G is 2, then $\Gamma_{di}(G; x, y) = I_2(G; x, y) = y^2 I(G; x)$, where I(G; x) is the independence polynomial of G.

The readers may refer to Harary [5] for some concepts not defined in this study.

3 Results

First, we consider the star $K_{1,n}$ of order n + 1. This graph has a very nice property since the vertices except for the central vertex are distributed uniformly in terms of distances.

Theorem 3.1. Let n be a natural number greater than 1. Then

$$\Gamma_{di}(K_{1,n}; x, y) = (1+x)^n y^2 - nxy^2 - y^2.$$

Proof. Let $K_{1,n}$ be the join of K_1 and $\overline{K_n}$, where $V(K_1) = \{u\}$ and $V(\overline{K_n}) = \{v_1, v_2, \ldots, v_n\}$. Let S be an independent set in $K_{1,n}$.

Case 1: $u \in S$.

In this case, $S = \{u\}$ since $uv \in E(K_{1,n})$ for every $v \in V(\overline{K_n})$. Case 2: $u \notin S$.

Then S is a subset of $V(\overline{K_n})$. Let $v, w \in S$ with $v \neq w$. Then $d_{K_{1,n}}(v, w) = 2$ since vu and uw are edges of $K_{1,n}$ and [v, u, w] is the unique v - w geodesic in $K_{1,n}$ because both vertices are pendant and $K_{1,n}$ is a tree. Hence, S is a d_2 -independent. Thus,

$$\Gamma_{di}(K_{1,n}; x, y) = I_2(G; x, y)
= \sum_{i=2}^{\alpha_2(G)} \alpha_{ik}(K_{i,1}) x^i y^2
= y^2 \sum_{i=2}^n \binom{n}{i} x^i
= y^2 ((1+x)^n - nx - 1)
= (1+x)^n y^2 - nxy^2 - y^2$$

The following lemma characterizes the d_k -independent subsets of $K_{m,n}$.

Lemma 3.2. Suppose that m and n are natural numbers such that both are at least 3. A subset S of $V(K_{m,n})$ is d_k -independent in $K_{m,n}$ if and only if k = 2 and S does not intersect the partite sets at the same time.

Proof. Assume that S is a d_k -independent set. The assertion that k = 2 follows from the fact that the diameter of $K_{m,n}$ is 2. Suppose S intersects $V(\overline{K_m})$ and $V(\overline{K_n})$. Take $w \in S \cap V(\overline{K_m})$ and $z \in S \cap V(\overline{K_n})$. Then $wz \in E(K_{m,n})$. This contradicts the independence of S.

Suppose that k = 2 and S does not intersect the partite sets at the same time. Then $S \subseteq V(\overline{K_m})$ or $S \subseteq V(\overline{K_n})$.

Case 1: $S \subseteq V(\overline{K_m})$ Let $w, z \in S$. Then there exists $v \in V(\overline{K_n})$ such that [w, v, z] is a w - z geodesic in $K_{m,n}$. Thus, $d_{K_{m,n}}(w, z) = 2$. Hence, S is d_2 -independent in $K_{m,n}$.

Case 2: $S \subseteq V(\overline{K_n})$ Let $p, q \in S$. Then there exists $u \in V(\overline{K_m})$ such that [p, u, q] is a p - q geodesic in $K_{m,n}$. Thus, $d_{K_{m,n}}(p, q) = 2$. Hence, S is d_2 -independent in $K_{m,n}$.

The complete bipartite graphs consist of two independent subsets and partitions join together by adding edges that connects between them. We established their distance independence polynomial in the next result.

Theorem 3.3. Suppose that m and n are natural numbers such that both are at least 3. Then

$$\Gamma_{di}(K_{m,n};x,y) = (1+x)^m y^2 + (1+x)^n y^2 - mxy^2 - nxy^2 - 2y^2.$$

Proof. Consider an independent set subset S in $K_{m,n}$. Now, $S \cap V(\overline{K_m}) = \emptyset$ or $S \cap V(\overline{K_n}) = \emptyset$. Hence, either $S \subseteq V(\overline{K_n})$ or $S \subseteq V(\overline{K_m})$. Take distinct vertices $w, z \in S$. Then $d_{K_{m,n}}(w, z) = 2$. Thus, S is a d_2 -independent set.

Case 1: $S \subseteq V(\overline{K_m})$

For each $i \in \{1, 2, ..., m\}$, the set $V(\overline{K_m})$ has exactly $\binom{m}{i}$ independent dent subsets of cardinality i. This contributes $\sum_{i=2}^{m} \binom{m}{i} x^i y^2$ to the distance independent polynomial of $K_{m,n}$. Case 2: $S \subseteq V(\overline{K_n})$ (n)

For each $j \in \{1, 2, ..., n\}$, the set $V(\overline{K_n})$ has exactly $\binom{n}{j}$ independent subsets of cardinality j. This contributes $\sum_{j=2}^n \binom{n}{j} x^j y^2$ to the distance inde-

pendent polynomial of $K_{m,n}$. Combining Case 1 and Cases 2, we have

1234

Distance Independence Polynomial of Graphs

$$\Gamma_{di}(K_{m,n}; x, y) = \sum_{i=2}^{m} \binom{m}{i} x^{i} y^{2} + \sum_{j=2}^{n} \binom{n}{j} x^{j} y^{2}$$

$$= y^{2} \left[\sum_{i=0}^{m} \binom{m}{i} x^{i} - \binom{n}{0} x^{0} - \binom{m}{1} x^{1} \right] + y^{2} \left[\sum_{j=0}^{n} \binom{n}{j} x^{j} - \binom{n}{0} x^{0} - \binom{n}{1} x^{1} \right]$$

$$= y^{2} \left[(1+x)^{m} - mx - 1 \right] + y^{2} \left[(1+x)^{n} - nx - 1 \right]$$

$$= (1+x)^{m} y^{2} + (1+x)^{n} y^{2} - mxy^{2} - nxy^{2} - 2y^{2}.$$

If m = n, then we have

$$\Gamma_{di}(K_{m,m};x,y) = 2(1+x)^m y^2 - 2mxy^2 - 2y^2.$$

Acknowledgment. The authors would like to acknowledge the support of Bohol Island State University and Mindanao State University-Tawi-Tawi College of Technology and Oceanography for the resources provided which are instrumental in the conduct and completion of this piece of work.

References

- R.G. Artes Jr., N.H.R. Mohammad, A.A. Laja, N.H.M. Hassan, From Graphs to Polynomial Rings: Star Polynomial Representation of Graphs, Advances and Applications in Discrete Mathematics, 37, (2023), 67–76. https://doi.org/10.17654/0974165823012
- [2] R.G. Artes Jr., J.I.C. Salim, R.A. Rasid, J.I. Edubos, B.J. Amiruddin, Geodetic Closure Polynomial of Graphs, *International Journal of Mathematics and Computer Science*, **19**, no. 2, (2024), 439–443.
- [3] J.I. Brown, R.J. Nowakowski, The neighbourhood polynomial of a graph, Australian Journal of Combinatorics, 42, (2008), 55–68.
- [4] J. Ellis-Monaghan, J. Merino, Graph Polynomials and Their Applications II: Interrelations and Interpretations, Birkhauser, Boston, 2011.
- [5] F. Harary, *Graph Theory*, CRC Press, Boca Raton, 2018.

- [6] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, *Discrete Mathematics*, **125**, (1994), 219–228.
- [7] J.F.B. Maldo, R.G. Artes Jr., Applications of Chuh-Shih-Chieh's Identity in Geodetic Independence Polynomials. *International Journal of Mathematics and Computer Science*, **19**, no. 3, (2024), 649–652.
- [8] C.A. Villarta, R.G. Eballe, R.G. Artes Jr., Induced Path Polynomials of the Join and Corona of Graphs, *International Journal of Mathematics* and Computer Science, **19**, no. 3, (2024), 643–647.