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Abstract

Assuming that the two variables X and Y are independent gen-
eralized Pareto distributed with a known common scale parameter λ,
we address a Bayesian analysis for two stress-strength model reliabil-
ities R1 and R2. Three various loss functions (Squared, De-Groot,
and Precautionary) are used under doubly type II censored data in
order to examine the impact of the two unknown shape parameters, α
and θ, respectively, on the reliability functions. We compare the three
estimators and apply the Mean squared error (MSE) criteria taking
different sample sizes using Monte Carlo simulations to compare the
different proposed methods. Finally, using the final results from the
simulation, we show that the best achievement is the Precautionary
Loss Function.

1 Introduction

The generalized Pareto distribution (GPD) is an important distribution in
statistics, which is widely used in the fields of finance and engineering. GPD
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was introduced by Pickands [1] and has since been further studied by Davison
[2], Castillo [3] and Rezaei et al. [4] who derived the maximum likelihood esti-
mators, Bayes estimators and some confidence intervals for stress-strength re-
liability based on progressive Type II censoring schemes. El-Sagheer [5] dealt
with the Bayesian point prediction for the GPD based on general progres-
sive Type II censored sample. Karam and Jbur [6] considered the Bayesian
analysis of the unknown parameters under different priors and loss functions
and doubly Type II censored samples.

From the properties of the Generalized Pareto distribution, if the random
variable Xhas a generalized Pareto distribution, then the conditional distri-
bution of X − t given by X ≥ t is also generalized Pareto, with the same
value of k. In addition to the failure rate r (x) = f(x)/ (1− F (x)) is given
by r(x) = 1/(α − kx) and is monotonic in x, decreasing if k < 0, constant
if k = 0, and increasing if k > 0. The cumulative distribution function
cdf and the probability density function pdf of this distribution (GP ) with
twoparameters is defined as [7]:

F (x) = 1− e−αln(1+λx) = 1− (1 + λx)−α (1.1)

And,

f (x) = αλ (1 + λx)−(α+1)

= αλe−(α+1)ln(1+λx)
(1.2)

where x ≥ 0, the shape and scale parameter α, λ > 0. The system will
be described for reliability estimation R = P [Y < X ], where the random
variables X and Y are the independent Pareto distributions with different
parameters. The mathematical expression has derived for the Multicompo-
nent model reliabilities R1 and R2, when X is a strength for the kcomponents
that are subject to one stress which is Y, and if X is the only strength that
is subject to k components of stress Y.

In this paper, the reliability Bayesian analysis to estimate the unknown
shape parameters (α and θ) for X and Y under three loss functions is orga-
nized as follows:
In Section 2, we introduce the system reliability formulation. In Section 3, we
consider the three methods for estimating reliabilities R1 and R2. In Section
4, we compare the estimators of R by Monte Carlo simulations. Finally, the
results conclusions are given in Section 5.
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2 The system reliability formulation

The formulation of two stress-strength model reliabilities of GP distribu-
tion can be obtained as follows: Let the strength random variables sample
(x1, . . . , xk) be independent identically distributed with parameters
(α1 = α2= . . . = αk = α;λ) and independent from stress (Y ) random vari-
able with GP (θ, λ). The reliability for k components exposed to one stress
from the Generalized Pareto distribution can be expressed as:

R1 = P (y < max (x1, . . . , xk))

= 1−

∫

y

k
∏

i=1

Fxi
(y) f (y)dy

= 1−

∫

y

(Fx (y))
k f (y) dy (2.3)

by substituting in Eq. 2.3 as:

= 1−

∫

y

(

1− (1 + λy)−α
)k

θλ (1 + λy)−(θ+1) dy

= 1−

∫

y

k
∑

j=0

Ck
j (−1)j (1 + λy)−jαθλ (1 + λy)−(θ+1) dy

= 1−
k
∑

j=0

Ck
j (−1)jθ

∫

y

λ (1 + λy)−(jα+θ+1)dy

Then,

R1 = 1−
k
∑

j=0

Ck
j (−1)j

θ

jα + θ
(2.4)

Next, we consider the reliability for a component strength x with GP (α, λ)
(y1, . . . , yk) stresses from GP with (θ1 = θ2= . . . = θk = θ;λ) as:

R2 = P (max (y1, . . . , yk) < x)

=

∫

x

k
∏

i=1

Fyi (x) f (x) dx

=

∫

x

(Fy (x))
k f (x) dx
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=

∫

x

(

1− (1 + λx)−θ
)k

αλ (1 + λx)−(α+1) dx

=

∫

x

k
∑

j=0

Ck
j (−1)j (1 + λx)−jθαλ (1 + λx)−(α+1) dx

=
k
∑

j=0

Ck
j (−1)jα

∫

x

λ (1 + λx)−(jθ+α+1)dx

Then,

R2 =
k
∑

j=0

Ck
j (−1)j

α

α + jθ
(2.5)

3 Estimation of reliability

In this section, we discuss three estimators of the two unknown parameters
α, θ and the two reliabilities R1 and R2 with generalized Pareto distribution
under the doubly Type II censored data.

3.1 The likelihood function

Assuming that X = x(1), x(2), . . . , x(r), x(r+1), . . . , x(s)
, x(s+1), . . . , x(n) from

Xi ∼ GP (α, λ) and Y = y(1), y(2), . . . , y(r), . . . , y(s), . . . , y(n) from Yi ∼

GP (θ, λ); be two independent random variables from a GP distribution of
a sample of size n. The statistical analysis contains the application of only the
ordered remaining observations in the sample; that is, x = x(r), x(r+1), . . . , x(s)

;

the doubly censored data pulled from the sample with cdf and pdf as given
in 1.1 and 1.2 equations, respectively. Then the likelihood function can be
written as [8, 9]:
L (xi; α, λ) =

∏s

i=r f(xi;α, λ)

=
n!

(r − 1)!(n− s)!

s
∏

i=r

f(xi)
(

F (x(r))
)r−1 (

1− F (x(s))
)n−s

,

where
∏s

i=r f(xi) = αs−r+1λs−r+1e
−(α+1)

∑s
i=r ln(1+λxi)

(

F (x(r))
)r−1

=

(

1− e
−αln

(1+λx(r))
)r−1

We can write:
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(

F (x(r))
)r−1

=
∑r−1

j=0 C
r−1
j (−1)j e

−αj ln(1+λx(r)), and

(

1− F (x(s))
)n−s

=

(

e
−αln

(1+λx(s))
)n−s

= e
−α(n−s)ln

(1+λx(s))

Then L (xi; α, λ) = n!
(r−1)!(n−s)!

αs−r+1λs−r+1e
−(α+1)

∑s
i=r ln(1+λxi)e−α(n−s) ln (1+λx(s))

r−1
∑

j=0

Cr−1
j (−1)j e−αj ln(1+λx(r)) (3.6)

The gamma distribution is used as a prior distribution due to its wide impor-
tance in Bayesian analysis. Let α, θ be dependent and unknown parameters
and consider the reliability of these parameters as random variables under
gamma with common parameters (a, b).

g (α) =
ba

Γa
αa−1e−bα (3.7)

And,

g (θ) =
ba

Γa
θa−1e−bθ (3.8)

for α, θ > 0 and a, b > 0. Using the likelihood function in Eq. 3.6 and the
gamma prior density Eq. 3.7, we have:

L (xi; α, λ) g (α) =
n!

(r − 1)!(n− s)!
αs−r+1λs−r+1e−(α+1)

∑n
i=1 ln (1+λxi)

ba

Γa
αa−1e−bαe−α(n−s) ln(1+λx(s))

r−1
∑

j=0

Cr−1
j (−1)j e−αj ln (1+λx(r))

(3.9)

L (xi; α, λ) g (α) =
n! baλs−r+1 e−

∑n
i=1 ln (1+λxi)

(r − 1)!(n− s)!Γa
αs−r+a

r−1
∑

j=0

Cr−1
j (−1)j e−α(

∑n
i=1 ln (1+λxi)+(n−s)ln(1+λx(s))+j ln (1+λx(r))+b) (3.10)

Rewrite Eq. 3.10 and assume that: Q = n! baλs−r+1 e−
∑n

i=1 ln (1+λxi)

(r−1)!(n−s)!Γa
;

and Aj =
∑n

i=1 ln (1 + λxi) + (n− s) ln
(

1 + λx(s)

)

+j ln
(

1 + λx(r)

)

+ b
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Then
∫

L (xi;α, λ) g (α) dα = Q
∑r−1

j=0 C
r−1
j (−1)j

∫

α
αs−r+ae−Ajαdα Finally, we

obtain the likelihood function g (α) as the prior function for the shape pa-
rameter α from xi ∼ GP

∫

L (xi; α, λ) g (α) dα = Q

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a+ 1)

As−r+a+1
j

(3.11)

Similarly, we obtain the function for the shape parameter θ from yi ∼ GP ,
as:

∫

L (yi; θ, λ) g (θ) dθ = K

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a + 1)

Bs−r+a+1
j

, (3.12)

where K = n! baλs−r+1 e
−

∑n
i=1 ln(1+λyi)

(r−1)!(n−s)!Γa
;

and Bj =
∑n

i=1 ln (1 + λyi) + (n− s) ln
(

1 + λy(s)
)

+ jln
(

1 + λy(r)
)

+ b

3.2 The posterior distribution

The objective of this section is to find Bayesian estimators of the shape
parameters α, θ by using the three various loss functions [10]. The posterior
function for xi ∼ GP (α, λ) and yi ∼ GP (θ, λ) are:

p

(

α

x

)

=
l(α

x
)g (α)

∫

∞

0
l(α

x
)g (α) dα

=
Q
∑r−1

j=0C
r−1
j (−1)j αs−r+ae−Ajα

Q
∑r−1

j=0 C
r−1
j (−1)j Γ(s−r+a+1)

As−r+a+1
j

(3.13)

In addition,

p

(

θ

y

)

=
l
(

θ
y

)

g (θ)

∫

∞

0
l
(

θ
x

)

g (θ) dθ

=
K
∑r−1

j=0 C
r−1
j (−1)j αs−r+ae−Bjα

K
∑r−1

j=0 C
r−1
j (−1)j Γ(s−r+a+1)

Bs−r+a+1
j

(3.14)
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3.2.1 Squared error loss function SELF

The derivation of Bayes estimator under SELF is given by [11]:

α̂s = E

(

α

x

)

=

∫

α

αp

(

α

x

)

dα

=

∑r−1
j=0 C

r−1
j (−1)j

∑r−1
j=0 C

r−1
j (−1)j Γ(s−r+a+1)

As−r+a+1
j

∫

α

αs−r+a+1e−Ajαdα.

Let Zj =
∑r−1

j=0C
r−1
j (−1)j Γ(s−r+a+1)

As−r+a+1
j

. Then α̂s =
1
Zj

∑r−1
j=0 C

r−1
j (−1)j

Γ(s−r+a+2)

As−r+a+2
j

Also, θ̂s =
1
Wj

∑r−1
j=0 C

r−1
j (−1)j Γ(s−r+a+2)

Bs−r+a+2
j

; in whichWj =
∑r−1

j=0 C
r−1
j

(−1)j Γ(s−r+a+1)

Bs−r+a+1
j

Thus the reliability estimation function by Eqs. 2.4 and 2.5

is given by:

R̂1s = 1−

k
∑

j=0

Ck
j (−1)j

θ̂s

jα̂s + θ̂s
(3.15)

And,

R̂2s =
k
∑

j=0

Ck
j (−1)j

α̂s

α̂s + jθ̂s
(3.16)

3.2.2 De Groot loss function DLF

We can also use the Bayes estimator DeGroot Loss Functiont defined as [12]:

α̂D =
E
(

α2

x

)

E(α
x )

and θ̂D =
E
(

θ2

y

)

E
(

θ
y

) . In which, E
(

α2

x

)

= 1
Zj

∑r−1
j=0 C

r−1
j (−1)j

∫

α
αs−r+a+2e−Ajαdα

E

(

α2

x

)

=
1

Zj

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a+ 3)

As−r+a+3
j

(3.17)

Also, E
(

θ2

y

)

= 1
Wj

∑r−1
j=0 C

r−1
j (−1)j

∫

θ
αs−r+a+3e−Bjαdθ

E

(

θ2

y

)

=
1

Wj

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a+ 3)

Bs−r+a+3
j

(3.18)
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Using Eqs. 3.17 and 3.18 for α̂D and θ̂D, the reliability estimation function
by Eqs. 2.4 and 2.5 is given as:

R̂1D = 1−

k
∑

j=0

Ck
j (−1)j

θ̂D

jα̂D + θ̂D
(3.19)

and

R̂2D =

k
∑

j=0

Ck
j (−1)j

α̂D

α̂D + jθ̂D
(3.20)

3.2.3 Precautionary loss function

Finally, using the Bayes estimator of the Precautionary Loss Function from

Eqs. 3.17 and 3.18 [8]: α̂p =
(

E
(

α2

x

))
1
2
and θ̂p =

(

E
(

θ2

y

))
1
2

α̂p =

(

1

Zj

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a + 3)

As−r+a+3
j

)
1
2

(3.21)

and

θ̂p =

(

1

Wj

r−1
∑

j=0

Cr−1
j (−1)j

Γ(s− r + a+ 3)

Bs−r+a+3
j

)
1
2

(3.22)

Then, by Eqs. 3.21 and 3.22, the reliability estimation function is given as:

R̂1P = 1−

k
∑

j=0

Ck
j (−1)j

θ̂P

jα̂P + θ̂P
(3.23)

and

R̂2P =

k
∑

j=0

Ck
j (−1)j

α̂P

α̂P + jθ̂P
(3.24)

In order to study the behavior of these estimators in Eqs. 3.15, 3.16, 3.19,
3.20, 3.23 and 3.24 for the two reliabilities and to identify the best achieve-
ment among them, a simulation study was conducted to compare among
these estimators.
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4 Simulation Study

A simulation study was performed by using MATLAB 2018 to compare the
performance of the discussed estimators for the best reliability estimate of the
stress-strength based on samples generated from the generalized Pareto dis-
tribution using doubly Type II censored data. The results are based on Monte
Carlo simulation of the different sample sizes n = 15, 30, 60 and applied for
different values of [(r, s) = (6, 10), (11, 20)] with different parameters values
of θ, α. To generate the different values of the random variableX from the cu-
mulative distribution function and using the inverse technique of distribution

function: F = 1− (1 + λx)−α;
(

1− F = (1 + λx)−α
)

−1
α ; 1+λx = (1− F )

−1
α ;

Then, x = 1
λ

(

(1− F )
−1
α − 1

)

The results are recorded in Tables 1-6 with

each table containing the estimates of the reliability for GP distribution un-
der three various loss functions (Squared Error, De-Groot and Precautionary)
with the efficiency of the estimators MSE for the different sample sizes and
parameters values. From Table 1, it is clear that the achievement preference
differed between the Squared Error and Precautionary smallest sample size
n = 15 and different parameters values for reliabilities R1 and R2, but the
preference was the Precautionary loss function for both dependencies in the
Tables 2-6, and the Squared Error loss function in the Table 3. Noting that
there is no best performance under the effect of De-Groot loss function un-
der those different experimental values of the distribution parameters, sample
sizes and component numbers.

Table 1: Experiment 1 results
Exp.1 θ = 0.4, α = 0.7, λ = 0.9, n = 15, r = 6, s = 10, k = 3

Real reliabilities values R1=0.877511961722488 R2=0.584242424242424
S D P Best

R1 mean 0.861457116 0.911385290 0.861457585
P

MSE 0.000257758 0.001147402 0.000257743
R2 Mean 0.590430699 0.445463725 0.590431087

S
MSE 0.000038295 0.019259527 0.000038300

Table 2: Experiment 2 results
Exp.2 θ = 0.3, α = 0.5, λ = 0.9, n = 15, r = 6, s = 10, k = 3

Real reliabilities values R1=0.868506493506494 R2=0.599358974358974
S D P Best

R1 mean 0.857072240 0.907952314 0.857072279
P

MSE 0.000130742 0.001555973 0.000130741
R2 Mean 0.599073415 0.459849115 0.599074290

P
MSE 0.000000082 0.019463001 0.000000081
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Table 3: Experiment 3 results
Exp.3 θ = 0.4, α = 0.7, λ = 0.9, n = 30, r = 11, s = 20, k = 3

Real reliabilities values R1=0.877511961722488 R2=0.584242424242424
S D P Best

R1 mean 0.86960433 0.93131922 0.86957347
S

MSE 0.00006253 0.00289522 0.00006302
R2 Mean 0.58689741 0.43172121 0.58696388

S
MSE 0.00000705 0.02326272 0.00000741

Table 4: Experiment 4 results
Exp.4 θ = 0.3, α = 0.5, λ = 0.9, n = 30, r = 11, s = 20, k = 3

Real reliabilities values R1=0.868506493506494 R2=0.599358974358974
S D P Best

R1 mean 0.85999925 0.92043687 0.86001709
P

MSE 0.00007237 0.00269676 0.00007207
R2 mean 0.60288125 0.46039319 0.60287730

P
MSE 0.00001241 0.01931149 0.00001238

Table 5: Experiment 5 results
Exp.5 θ = 0.4, α = 0.7, λ = 0.9, n = 60, r = 30, s = 45, k = 3

Real reliabilities values R1=0.877511961722488 R2=0.584242424242424
S D P Best

R1 mean 0.84549319 0.91686782 0.86433051
P

MSE 0.0010252 0.00154888 0.00017375
R2 Mean 0.58031448 0.43468788 0.58470295

P
MSE 1.54E-05 0.02236656 2.12E-07

Table 6: Experiment 6 results
Exp.6 θ = 0.3, α = 0.5, λ = 0.9, n = 30, r = 11, s = 20, k = 3

Real reliabilities values R1=0.868506493506494 R2=0.599358974358974
S D P Best

R1 mean 0.85999925 0.92043687 0.86001709
P

MSE 0.00007237 0.00269676 0.00007207
R2 mean 0.60288125 0.46039319 0.60287730

P
MSE 0.00001241 0.01931149 0.00001238

5 Conclusions

We compared three estimators of reliability for stress–strength Generalized
Pareto Bayesian model, by means of squared error MSE criteria, taking dif-
ferent sample sizes. We performed Monte Carlo simulations to compare the
different proposed methods. We noticed that the best achievement for the
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two Reliabilities, whose behavior were studied under the various experiments
mentioned above, was the Precautionary loss function under the doubly type
II censored data.
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