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Abstract

In this paper, we introduce the notion of (τ1, τ2)-regular spaces and
investigate some characterizations of such spaces.

1 Introduction

It is well known that various types of separation axioms play a significant role
in the theory of classical point set topology. In literature, separation axioms
have been studied by many mathematicians. Sinnal and Arya [12] defined a
new separation axiom called almost regularity which is weaker than regular-
ity. Mashhour et al [9] introduced and investigated the concept of preopen
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sets and preclosed sets in topological spaces. El-Deeb et al. [6] introduced
and studied the notion of p-regular spaces by using preopen sets. Malghan
and Navalagi [8] introduced and investigated the concept of almost p-regular
spaces as a generalization of p-regularity. Noiri [10] defined a new class of
sets called rgp-closed sets and investigated some characterizations of almost
p-regular spaces by utilizing rgp-closed sets. Buadong et al. [5] introduced
and investigated new separation axioms in generalized topology and mini-
mal structure spaces. Srisarakham and Boonpok [13] introduced some weak
separation axioms by utilizing δp(Λ, s)D-sets. In [2], the present authors
studied some properties of (Λ, sp)-open sets. Boonpok and Viriyapong [1]
introduced and investigated some weak separation axioms by utilizing the
notions of (Λ, sp)-open sets and the (Λ, sp)-closure operator. Torton et al.
[14] introduced and studied the notion of µ(m,n)-regular spaces. Furthermore,
several characterizations of (Λ, p)-regular spaces and SΛs-regular spaces were
presented in [11] and [7], respectively. In this paper, we introduce the notion
of (τ1, τ2)-regular spaces. Moreover, some characterizations of (τ1, τ2)-regular
spaces are discussed.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [4] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [4] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
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(5) τ1τ2-Cl(X − A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-
open [17] (resp. (τ1, τ2)s-open [3], (τ1, τ2)p-open [3], (τ1, τ2)β-open [3]) if A =
τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). A subset A of a bitopological space
(X, τ1, τ2) is said to be α(τ1, τ2)-open [16] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))).
The complement of an α(τ1, τ2)-open set is called α(τ1, τ2)-closed.

3 Characterizations of (τ1, τ2)-regular spaces

In this section, we introduce the notion of (τ1, pτ2)-regular spaces. Moreover,
we discuss some characterizations of (τ1, τ2)-regular spaces.

Recall that a subset A of a bitopological space (X, τ1, τ2) is said to be
generalized (τ1, τ2)-closed (briefly, g-(τ1, τ2)-closed) [15] if τ1τ2-Cl(A) ⊆ U

whenever A ⊆ U and U is τ1τ2-open. A subset A is called g-(τ1, τ2)-open [15]
if X − A is g-(τ1, τ2)-closed.

Lemma 3.1. [15] A subset A of a bitopological space (X, τ1, τ2) is g-(τ1, τ2)-
open if and only if F ⊆ τ1τ2-Int(A) whenever F ⊆ A and F is τ1τ2-closed.

Definition 3.2. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-regular
if for each τ1τ2-closed set F and each point x ∈ X − F , there exist disjoint
τ1τ2-open sets U and V such that x ∈ U and F ⊆ V .

Theorem 3.3. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-regular.

(2) For each x ∈ X and each τ1τ2-open set U with x ∈ U , there exists a
τ1τ2-open set V such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

(3) For each τ1τ2-closed set F of X,

∩{τ1τ2-Cl(V ) | F ⊆ V and V is τ1τ2-open} = F.

(4) For each subset A of X and each τ1τ2-open set U with A∩U 6= ∅, there
exists a τ1τ2-open set V such that A ∩ V 6= ∅ and τ1τ2-Cl(V ) ⊆ U .

(5) For each nonempty subset A of X and each τ1τ2-closed set F of X with
A ∩ F = ∅, there exist τ1τ2-open sets V and W such that A ∩ V 6= ∅,
F ⊆ W and V ∩W = ∅.
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(6) For each τ1τ2-closed set F of X and x 6∈ F , there exist a τ1τ2-open set
U and a g-(τ1, τ2)-open set V such that x ∈ U , F ⊆ V and U ∩ V = ∅.

(7) For each subset A of X and each τ1τ2-closed set F with A∩F = ∅, there
exist a τ1τ2-open set U and a g-(τ1, τ2)-open set V such that A∩U 6= ∅,
F ⊆ V and U ∩ V = ∅.

Proof. (1) ⇒ (2): Let G be a τ1τ2-open set and x 6∈ X−G. Then, there exist
disjoint τ1τ2-open sets U and V such that X − G ⊆ U and x ∈ V . Thus,
V ⊆ X − U and hence x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ X − U ⊆ G.

(2) ⇒ (3): Let F be a τ1τ2)-closed set and x 6∈ X − F . By (2), there
exists a τ1τ2-open set U such that x ∈ U ⊆ τ1τ2-Cl(U) ⊆ X − F . Therefore,
F ⊆ X − τ1τ2-Cl(U) = V . Since V is τ1τ2-open and U ∩ V = ∅. Thus,
x 6∈ τ1τ2-Cl(V ) and hence F ⊇ ∩{τ1τ2-Cl(V ) | F ⊆ V and V is τ1τ2-open}.

(3) ⇒ (4): Let A be a subset of X and U be a τ1τ2-open set such that
A ∩ U 6= ∅. Let x ∈ A ∩ U . Then, we have x 6∈ X − U . Thus by (3),
there exists a τ1τ2-open set W such that X − U ⊆ W and x 6∈ τ1τ2-Cl(W ).
Put V = X − τ1τ2-Cl(W ) which is a τ1τ2-open set containing x and hence
A ∩ V 6= ∅. Now, V ⊆ X −W and so τ1τ2-Cl(V ) ⊆ X −W ⊆ U .

(4) ⇒ (5): Let A be a nonempty subset of X and F be a τ1τ2-closed set
such that A∩F = ∅. Then, X−F is τ1τ2-open and A∩(X−F ) 6= ∅. By (4),
there exists a τ1τ2-open set V such that A∩V 6= ∅ and τ1τ2-Cl(V ) ⊆ X −F .
If we put W = X − τ1τ2-Cl(V ), then F ⊆ W and W ∩ V = ∅.

(5) ⇒ (1): Let F be a τ1τ2-closed set not containing x. Then, F∩{x} = ∅.
Thus by (5), there exist τ1τ2-open sets V and W such that x ∈ V , F ⊆ W

and V ∩W = ∅.

(1) ⇒ (6): The proof is obvious.

(6) ⇒ (7): Let A be a subset of X and F be a τ1τ2-closed set such that
A ∩ F = ∅. Then, for each x ∈ A, x 6∈ F . By (6), there exist a τ1τ2-open set
U and a g-(τ1, τ2)-open set V such that x ∈ U , F ⊆ V and U ∩V = ∅. Thus,
A ∩ U 6= ∅, F ⊆ V and U ∩ V = ∅.

(7) ⇒ (1): Let F be a τ1τ2-closed set such that x 6∈ F . Since {x}∩F = ∅,
by (7) there exist a τ1τ2-open set U and a g-(τ1, τ2)-open set W such that
x ∈ U , F ⊆ W and U ∩ W = ∅. Since W is g-(τ1, τ2)-open, by Lemma
3.1, F ⊆ τ1τ2-Cl(W ) = V and U ∩ V = ∅. This shows that (X, τ1, τ2) is
(τ1, τ2)-regular.
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