International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1335–1342

$(au_1, au_2) heta$ -closed sets and weak (au_1, au_2) -continuity

Butsakorn Kong-ied¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: butsakorn.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received April 15, 2024, Accepted May 16, 2024, Published June 1, 2024)

Abstract

In this paper, we investigate some characterizations of upper and lower weakly (τ_1, τ_2) -continuous multifunctions by utilizing the notion of $(\tau_1, \tau_2)\theta$ -closed sets.

1 Introduction

In 1961, Levine [9] introduced and studied the notion of weakly continuous functions. Moreover, some characterizations of pairwise weakly Mcontinuous functions and weakly $(\mu, \mu')^{(m,n)}$ -continuous functions were investigated in [6] and [7], respectively. Popa [15] and Smithson [16] independently

Key words and phrases: $(\tau_1, \tau_2)\theta$ -closed set, upper weakly (τ_1, τ_2) -continuous multifunction, lower weakly (τ_1, τ_2) -continuous multifunction. AMS (MOS) Subject Classifications: 54C08, 54C60, 54E55. The corresponding author is Butsakorn Kong-ied. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net introduced the notion of weakly continuous multifunctions. The present authors introduced and studied other weak forms of continuous multifunctions: weakly quasicontinuous multifunctions [12], almost weakly continuous multifunctions [11], weakly α -continuous multifunctions [14], weakly β -continuous multifunctions [13]. These multifunctions have similar characterizations. The analogy in their definitions and results suggests the need to formulate a unified theory. Noiri and Popa [10] introduced and studied the notions of upper and lower weakly m-continuous multifunctions as a multifunction from a set satisfying certain minimal condition into a topological space. Laprom et al. [8] introduced and studied the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [18] introduced and investigated the notion of weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Furthermore, several characterizations of weakly $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions and almost weakly (τ_1, τ_2) -continuous multifunctions were studied in [4] and [3], respectively. In this paper, we investigate some characterizations of upper and lower weakly (τ_1, τ_2) -continuous multifunctions by utilizing $(\tau_1, \tau_2)\theta$ -closed sets and $(\tau_1, \tau_2)\theta$ -open sets.

2 Preliminaries

Throughout this paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -Int(A).

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [18] if $A = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [18] of A if $(\tau_1, \tau_2)\theta$ -closed sets and weak (τ_1, τ_2) -continuity

 $\tau_1\tau_2$ -Cl(U) $\cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [18] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [18] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [18] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X, F(A) = \bigcup_{x \in A} F(x)$.

3 Characterizations of upper and lower weakly (τ_1, τ_2) -continuous multifunctions

In this section, we investigate some characterizations of upper and lower (τ_1, τ_2) -continuous multifunctions.

Definition 3.1. [17] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $\sigma_1 \sigma_2$ -Cl(V) $\cap F(z) \neq \emptyset$ for each $z \in U$.

Lemma 3.2. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower weakly (τ_1, τ_2) -continuous, then for each $x \in X$ and each subset B of Y with $(\sigma_1, \sigma_2)\theta$ -Int $(B) \cap F(x) \neq \emptyset$, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $U \subseteq F^-(B)$.

Proof. Since $(\sigma_1, \sigma_2)\theta$ -Int $(B) \cap F(x) \neq \emptyset$, there exists a nonempty $\sigma_1\sigma_2$ -open set V of Y such that $\sigma_1\sigma_2$ -Cl $(V) \subseteq B$ and $F(x) \cap V \neq \emptyset$. Since F is lower weakly (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $\sigma_1\sigma_2$ -Cl $(V) \cap F(z) \neq \emptyset$ for each $z \in U$ and hence $U \subseteq F^-(B)$. \Box

Lemma 3.3. [17] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly (τ_1, τ_2) -continuous;
- (2) $F^{-}(V) \subseteq \tau_{1}\tau_{2}$ -Int $(F^{-}(\sigma_{1}\sigma_{2}$ -Cl(V))) for every $\sigma_{1}\sigma_{2}$ -open set V of Y;

- (3) $\tau_1 \tau_2$ -Cl($F^-(\sigma_1 \sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every $\sigma_1 \sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(B)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^{-}(\sigma_{1}\sigma_{2}\text{-Int}(B)) \subseteq \tau_{1}\tau_{2}\text{-Int}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-Int}(B))))$ for every subset B of Y;
- (6) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ open set V of Y;
- (7) $\tau_1 \tau_2$ -Cl(F⁺(V)) \subseteq F⁺($\sigma_1 \sigma_2$ -Cl(V)) for every $\sigma_1 \sigma_2$ -open set V of Y;
- (8) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Cl(K))) $\subseteq F^+(K)$ for every (σ_1, σ_2) r-closed set K of Y.

Theorem 3.4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ -Cl(F⁺(B)) \subseteq F⁺((σ_1, σ_2) θ -Cl(B)) for every subset B of Y;
- (3) $F(\tau_1\tau_2 Cl(A)) \subseteq (\sigma_1, \sigma_2)\theta Cl(F(A))$ for every subset A of X.

Proof. (1) \Rightarrow (2): Let B be any subset of Y. Suppose that

$$x \notin F^+((\sigma_1, \sigma_2)\theta$$
-Cl(B)).

Then, we have $x \in F^-(Y - (\sigma_1, \sigma_2)\theta - \operatorname{Cl}(B)) = F^-((\sigma_1, \sigma_2)\theta - \operatorname{Int}(Y - B))$. By Lemma 3.2, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $U \subseteq F^-(Y - B) = X - F^+(B)$. Thus $U \cap F^+(B) = \emptyset$ and hence

$$x \notin \tau_1 \tau_2$$
-Cl $(F^+(B))$.

This shows that $\tau_1 \tau_2$ -Cl $(F^+(B)) \subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(B)).

(2) \Rightarrow (3): Let A be any subset of X. By (2), we have $\tau_1 \tau_2$ -Cl(A) $\subseteq \tau_1 \tau_2$ -Cl($F^+(F(A))$) $\subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(F(A))). Thus,

$$F(\tau_1\tau_2\text{-}\mathrm{Cl}(A)) \subseteq (\sigma_1, \sigma_2)\theta\text{-}\mathrm{Cl}(F(A)).$$

(3) \Rightarrow (1): Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then $\sigma_1 \sigma_2$ -Cl(V) = $(\sigma_1, \sigma_2)\theta$ -Cl(V) and by (3), $F(\tau_1 \tau_2$ -Cl(F⁺(V))) $\subseteq (\sigma_1, \sigma_2)\theta$ -Cl(F(F⁺(V))) $\subseteq (\sigma_1, \sigma_2)\theta$ -Cl(V) = $\sigma_1 \sigma_2$ -Cl(V). Thus, $\tau_1 \tau_2$ -Cl(F⁺(V)) $\subseteq F^+(\sigma_1 \sigma_2$ -Cl(V)) and by Lemma 3.3, F is lower weakly (τ_1, τ_2) -continuous.

 $(\tau_1, \tau_2)\theta$ -closed sets and weak (τ_1, τ_2) -continuity

Definition 3.5. [17] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $\tau_1 \tau_2$ -open set U of X containing xsuch that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V).

Lemma 3.6. [17] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper weakly (τ_1, τ_2) -continuous;
- (2) $F^+(V) \subseteq \tau_1 \tau_2$ -Int $(F^+(\sigma_1 \sigma_2 Cl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (3) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int(K))) $\subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(B)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^+(\sigma_1\sigma_2 \operatorname{-Int}(B)) \subseteq \tau_1\tau_2 \operatorname{-Int}(F^+(\sigma_1\sigma_2 \operatorname{-Cl}(\sigma_1\sigma_2 \operatorname{-Int}(B))))$ for every subset B of Y;
- (6) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(V)))) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $\sigma_1\sigma_2$ open set V of Y;
- (7) $\tau_1 \tau_2 Cl(F^-(V)) \subseteq F^-(\sigma_1 \sigma_2 Cl(V))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (8) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Cl(K))) $\subseteq F^-(K)$ for every $(\sigma_1, \sigma_2)r$ -closed set K of Y.

Theorem 3.7. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \tau_2)$, the following properties are equivalent:

- (1) F is upper weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1 \tau_2 Cl(F^-(\sigma_1 \sigma_2 Int((\sigma_1, \sigma_2)\theta Cl(B)))) \subseteq F^-((\sigma_1, \sigma_2)\theta Cl(B))$ for every subset B of Y;
- (3) $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(B)))) $\subseteq F^-((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. Then $(\sigma_1, \sigma_2)\theta$ -Cl(*B*) is $\sigma_1\sigma_2$ closed in *Y* and by Lemma 3.6, $\tau_1\tau_2$ -Cl($F^-(\sigma_1\sigma_2$ -Int($(\sigma_1, \sigma_2)\theta$ -Cl(*B*)))) \subseteq $F^-((\sigma_1, \sigma_2)\theta$ -Cl(*B*)).

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then, we have $(\sigma_1, \sigma_2)\theta$ -Cl $(\sigma_1\sigma_2$ -Int $(K)) = \sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int(K)) = K and hence

$$\tau_{1}\tau_{2}\text{-}\operatorname{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K))) = \tau_{1}\tau_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K))))$$
$$\subseteq F^{-}((\sigma_{1},\sigma_{2})\theta\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K)))$$
$$= F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(K))) = F^{-}(K).$$

Thus, by Lemma 3.6, F is upper weakly (τ_1, τ_2) -continuous.

Theorem 3.8. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int($(\sigma_1, \sigma_2)\theta$ -Cl(B)))) $\subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y;
- (3) $\tau_1\tau_2$ -Cl($F^+(\sigma_1\sigma_2$ -Int($\sigma_1\sigma_2$ -Cl(B)))) $\subseteq F^+((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y.

Proof. The proof is similar to that of Theorem 3.7.

Definition 3.9. [2] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Ycontaining f(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Cl(V). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be weakly (τ_1, τ_2) -continuous if f has this property at each point of X.

Corollary 3.10. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ -Cl $(f^{-1}(\sigma_1\sigma_2$ -Int $((\sigma_1, \sigma_2)\theta$ -Cl $(B)))) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(B)))) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y.

Acknowledgment. This research project was financially supported by Mahasarakham University.

 $(\tau_1, \tau_2)\theta$ -closed sets and weak (τ_1, τ_2) -continuity

References

- [1] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [2] C. Boonpok, C. Klanarong, On weakly (τ_1, τ_2) -continuous functions, Eur. J. Pure Appl. Math., **17**, no. 1, (2024), 416–425.
- [3] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) continuity, Eur. J. Pure Appl. Math., **14**, no. 4, (2021), 1212–1225.
- [4] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6** (2020), e05367.
- [5] C. Boonpok, C. Viriyapong and M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [6] C. Boonpok, M-continuous functions in biminimal structure spaces, Far East J. Math. Sci., 43, no. 1, (2010), 41–58.
- [7] T. Duangphui, C. Boonpok, C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1165–1174.
- [8] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math., (2020), 4020971.
- [9] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68, (1961), 44–46.
- [10] T. Noiri, V. Popa, A unified theory of weak continuity for multifunctions, Stud. Circ. St. Ser. Mat. Univ. Bacău, 16, (2006), 167–200.
- [11] T. Noiri, V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26, (1993), 363–380.
- [12] T. Noiri, V. Popa, On upper and lower weakly quasicontinuous multifunctions, Rev. Roumaine Math. Pures Appl. 36, (1992), 499–508.
- [13] V. Popa, T. Noiri, On upper and lower weakly β-continuous multifunctions, Anal. Univ. Sci. Budapest, 43, (2000), 25–48.

- [14] V. Popa, T. Noiri, On upper and lower almost α-continuous multifunctions, Demonstratio Math., 29, (1996), 381–396.
- [15] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital., (5)
 15(A) (1978), 379–388.
- [16] R. E. Smithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70, (1978), 383–390.
- [17] M. Thongmoon, S. Sompong, C. Boonpok, Upper and lower weak (τ_1, τ_2) -continuity, (submitted).
- [18] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.