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Abstract

In this paper, we investigate some characterizations of upper and
lower weakly (τ1, τ2)-continuous multifunctions by utilizing the notion
of (τ1, τ2)θ-closed sets.

1 Introduction

In 1961, Levine [9] introduced and studied the notion of weakly contin-
uous functions. Moreover, some characterizations of pairwise weakly M-
continuous functions and weakly (µ, µ′)(m,n)-continuous functions were inves-
tigated in [6] and [7], respectively. Popa [15] and Smithson [16] independently
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introduced the notion of weakly continuous multifunctions. The present au-
thors introduced and studied other weak forms of continuous multifunctions:
weakly quasicontinuous multifunctions [12], almost weakly continuous multi-
functions [11], weakly α-continuous multifunctions [14], weakly β-continuous
multifunctions [13]. These multifunctions have similar characterizations. The
analogy in their definitions and results suggests the need to formulate a uni-
fied theory. Noiri and Popa [10] introduced and studied the notions of upper
and lower weakly m-continuous multifunctions as a multifunction from a set
satisfying certain minimal condition into a topological space. Laprom et
al. [8] introduced and studied the notion of β(τ1, τ2)-continuous multifunc-
tions. Viriyapong and Boonpok [18] introduced and investigated the notion
of weakly (τ1, τ2)α-continuous multifunctions. Furthermore, several char-
acterizations of weakly (τ1, τ2)δ-semicontinuous multifunctions and almost
weakly (τ1, τ2)-continuous multifunctions were studied in [4] and [3], respec-
tively. In this paper, we investigate some characterizations of upper and
lower weakly (τ1, τ2)-continuous multifunctions by utilizing (τ1, τ2)θ-closed
sets and (τ1, τ2)θ-open sets.

2 Preliminaries

Throughout this paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [5] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [5] of A and is denoted by τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open
[18] if A = τ1τ2-Int(τ1τ2-Cl(A)). Let A be a subset of a bitopological space
(X, τ1, τ2). A point x ∈ X is called a (τ1, τ2)θ-cluster point [18] of A if
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τ1τ2-Cl(U) ∩ A 6= ∅ for every τ1τ2-open set U containing x. The set of all
(τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure [18] of A and is
denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2)
is said to be (τ1, τ2)θ-closed [18] if (τ1, τ2)θ-Cl(A) = A. The complement of
a (τ1, τ2)θ-closed set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-
open sets of X contained in A is called the (τ1, τ2)θ-interior [18] of A and is
denoted by (τ1, τ2)θ-Int(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For
a multifunction F : X → Y , following [1] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each
A ⊆ X , F (A) = ∪x∈AF (x).

3 Characterizations of upper and lower weakly

(τ1, τ2)-continuous multifunctions

In this section, we investigate some characterizations of upper and lower
(τ1, τ2)-continuous multifunctions.

Definition 3.1. [17] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be lower weakly (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set
V of Y such that F (x)∩V 6= ∅, there exists a τ1τ2-open set U of X containing
x such that σ1σ2-Cl(V ) ∩ F (z) 6= ∅ for each z ∈ U .

Lemma 3.2. If F : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly (τ1, τ2)-continuous,
then for each x ∈ X and each subset B of Y with (σ1, σ2)θ-Int(B)∩F (x) 6= ∅,
there exists a τ1τ2-open set U of X containing x such that U ⊆ F−(B).

Proof. Since (σ1, σ2)θ-Int(B)∩F (x) 6= ∅, there exists a nonempty σ1σ2-open
set V of Y such that σ1σ2-Cl(V ) ⊆ B and F (x) ∩ V 6= ∅. Since F is lower
weakly (τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x

such that σ1σ2-Cl(V ) ∩ F (z) 6= ∅ for each z ∈ U and hence U ⊆ F−(B).

Lemma 3.3. [17] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the fol-
lowing properties are equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;
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(3) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+(σ1σ2-Cl(B)) for every subset

B of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(σ1σ2-Cl(σ1σ2-Int(B)))) for every sub-

set B of Y ;

(6) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-

open set V of Y ;

(7) τ1τ2-Cl(F
+(V )) ⊆ F+(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
+(σ1σ2-Cl(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of

Y .

Theorem 3.4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(B)) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B of Y ;

(3) F (τ1τ2-Cl(A)) ⊆ (σ1, σ2)θ-Cl(F (A)) for every subset A of X.

Proof. (1) ⇒ (2): Let B be any subset of Y . Suppose that

x 6∈ F+((σ1, σ2)θ-Cl(B)).

Then, we have x ∈ F−(Y − (σ1, σ2)θ-Cl(B)) = F−((σ1, σ2)θ-Int(Y − B)).
By Lemma 3.2, there exists a τ1τ2-open set U of X containing x such that
U ⊆ F−(Y − B) = X − F+(B). Thus U ∩ F+(B) = ∅ and hence

x 6∈ τ1τ2-Cl(F
+(B)).

This shows that τ1τ2-Cl(F
+(B)) ⊆ F+((σ1, σ2)θ-Cl(B)).

(2) ⇒ (3): Let A be any subset of X . By (2), we have τ1τ2-Cl(A) ⊆
τ1τ2-Cl(F

+(F (A))) ⊆ F+((σ1, σ2)θ-Cl(F (A))). Thus,

F (τ1τ2-Cl(A)) ⊆ (σ1, σ2)θ-Cl(F (A)).

(3) ⇒ (1): Let V be any σ1σ2-open set of Y . Then σ1σ2-Cl(V ) =
(σ1, σ2)θ-Cl(V ) and by (3), F (τ1τ2-Cl(F

+(V ))) ⊆ (σ1, σ2)θ-Cl(F (F+(V ))) ⊆
(σ1, σ2)θ-Cl(V ) = σ1σ2-Cl(V ). Thus, τ1τ2-Cl(F

+(V )) ⊆ F+(σ1σ2-Cl(V ))
and by Lemma 3.3, F is lower weakly (τ1, τ2)-continuous.
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Definition 3.5. [17] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be upper weakly (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set
V of Y containing F (x), there exists a τ1τ2-open set U of X containing x

such that F (U) ⊆ σ1σ2-Cl(V ).

Lemma 3.6. [17] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the fol-
lowing properties are equivalent:

(1) F is upper weakly (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(V ))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−(σ1σ2-Cl(B)) for every subset

B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Cl(σ1σ2-Int(B)))) for every sub-

set B of Y ;

(6) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(V )))) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-

open set V of Y ;

(7) τ1τ2-Cl(F
−(V )) ⊆ F−(σ1σ2-Cl(V )) for every σ1σ2-open set V of Y ;

(8) τ1τ2-Cl(F
−(σ1σ2-Cl(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of

Y .

Theorem 3.7. For a multifunction F : (X, τ1, τ2) → (Y, σ1, τ2), the follow-
ing properties are equivalent:

(1) F is upper weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for ev-

ery subset B of Y ;

(3) τ1τ2-Cl(F
−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every sub-

set B of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y . Then (σ1, σ2)θ-Cl(B) is σ1σ2-
closed in Y and by Lemma 3.6, τ1τ2-Cl(F

−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆
F−((σ1, σ2)θ-Cl(B)).

(2) ⇒ (3): The proof is obvious.
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(3) ⇒ (1): Let K be any (σ1, σ2)r-closed set of Y . Then, we have
(σ1, σ2)θ-Cl(σ1σ2-Int(K)) = σ1σ2-Cl(σ1σ2-Int(K)) = K and hence

τ1τ2-Cl(F
−(σ1σ2-Int(K))) = τ1τ2-Cl(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K))))

⊆ F−((σ1, σ2)θ-Cl(σ1σ2-Int(K)))

= F−(σ1σ2-Cl(σ1σ2-Int(K))) = F−(K).

Thus, by Lemma 3.6, F is upper weakly (τ1, τ2)-continuous.

Theorem 3.8. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is lower weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for ev-

ery subset B of Y ;

(3) τ1τ2-Cl(F
+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every sub-

set B of Y .

Proof. The proof is similar to that of Theorem 3.7.

Definition 3.9. [2] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
weakly (τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y
containing f(x), there exists a τ1τ2-open set U of X containing x such that
f(U) ⊆ σ1σ2-Cl(V ). A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
weakly (τ1, τ2)-continuous if f has this property at each point of X.

Corollary 3.10. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following
properties are equivalent:

(1) f is weakly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f
−1(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ f−1((σ1, σ2)θ-Cl(B)) for ev-

ery subset B of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1((σ1, σ2)θ-Cl(B)) for every

subset B of Y .
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