International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1321–1327

(au_1, au_2) -continuity and weak (au_1, au_2) -continuity

Butsakorn Kong-ied¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: butsakorn.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received April 1, 2024, Accepted May 5, 2024, Published June 1, 2024)

Abstract

In this paper, we investigate the relationships between (τ_1, τ_2) continuous multifunctions and weakly (τ_1, τ_2) -continuous multifunctions.

1 Introduction

The notion of weakly continuous functions was introduced by Levine [11]. Popa and Noiri [12] introduced the notion of weakly (τ, m) -continuous functions as functions from a topological space into a set satisfying some minimal conditions and investigated several characterizations of weakly (τ, m) continuous functions. Duangphui et al. [8] introduced and studied the notion

Key words and phrases: (τ_1, τ_2) -continuous multifunction, weakly (τ_1, τ_2) -continuous multifunction.

AMS (MOS) Subject Classifications: 54C08, 54C60, 54E55. The corresponding author is Butsakorn Kong-ied.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

of weakly $(\mu, \mu')^{(m,n)}$ -continuous functions. Moreover, several characterizations of pairwise weakly *M*-continuous functions were presented in [5]. Popa [15] and Smithson [17] independently introduced the notion of weakly continuous multifunctions. Popa and Noiri [13] introduced a class of multifunctions called weakly α -continuous multifunctions. Popa and Noiri [14] investigated some characterizations of weakly β -continuous multifunctions. Laprom et al. [10] introduced and investigated the concept of almost $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [19] introduced and studied the notion weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Furthermore, several characterizations of weakly $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions and almost weakly (τ_1, τ_2) -continuous multifunctions were presented in [3] and [2], respectively. In this paper, we investigate the relationships between (τ_1, τ_2) continuous multifunctions and weakly (τ_1, τ_2) -continuous multifunctions.

2 Preliminaries

Throughout this paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [4] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [4] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -Int(A).

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -paracompact [4] if every cover of A by $\tau_1\tau_2$ -open sets of X is refined by a cover of A which consists of $\tau_1\tau_2$ -open sets of X and is $\tau_1\tau_2$ -locally finite in X. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -regular [4] if for each $x \in A$ and each $\tau_1\tau_2$ -open set U of X containing x, there exists a $\tau_1\tau_2$ -open set V of X such that $x \in V \subseteq \tau_1\tau_2$ -Cl(V) $\subseteq U$.

Lemma 2.1. [4] If A is a $\tau_1\tau_2$ -regular $\tau_1\tau_2$ -paracompact set of a bitopological space (X, τ_1, τ_2) and U is a $\tau_1\tau_2$ -open neighbourhood of A, then there exists a $\tau_1\tau_2$ -open set V of X such that $A \subseteq V \subseteq \tau_1\tau_2$ -Cl(V) $\subseteq U$.

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For (τ_1, τ_2) -continuity and weak (τ_1, τ_2) -continuity

a multifunction $F : X \to Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X, F(A) = \bigcup_{x \in A} F(x)$.

A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper (τ_1, τ_2) continuous [16] (resp. upper almost (τ_1, τ_2) -continuous [9], upper weakly (τ_1, τ_2) continuous [18]) at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq V$ (resp. $F(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)), F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V)). A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper (τ_1, τ_2) continuous (resp. upper almost (τ_1, τ_2) -continuous, upper weakly (τ_1, τ_2) *continuous*) if F has this property at each point of X. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower (τ_1, τ_2) -continuous [16] (resp. lower almost (τ_1, τ_2) -continuous [9], lower weakly (τ_1, τ_2) -continuous [18]) at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ (resp. $F(z) \cap \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)) \neq \emptyset$, $F(z) \cap \sigma_1 \sigma_2$ -Cl $(V) \neq \emptyset$ for each $z \in U$. A multifunction $F: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be *lower* (τ_1, τ_2) continuous (resp. lower almost (τ_1, τ_2) -continuous, lower weakly (τ_1, τ_2) continuous) if F has this property at each point of X.

3 (τ_1, τ_2) -continuity and weak (τ_1, τ_2) -continuity

In this section, we investigate the relationships between (τ_1, τ_2) -continuous multifunctions and weakly (τ_1, τ_2) -continuous multifunctions.

Theorem 3.1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ such that F(x) is a $\tau_1\tau_2$ -regular $\tau_1\tau_2$ -paracompact set of Y for each point $x \in X$, the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) F is upper almost (τ_1, τ_2) -continuous;
- (3) F is upper weakly (τ_1, τ_2) -continuous.

Proof. We show only the implication $(3) \Rightarrow (1)$ since the others are obvious. Suppose that F is upper weakly (τ_1, τ_2) -continuous. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $F(x) \subseteq V$. Since F(x) is $\tau_1 \tau_2$ regular $\tau_1 \tau_2$ -paracompact, by Lemma 2.1 there exists a $\sigma_1 \sigma_2$ -open set W of Y such that $F(x) \subseteq W \subseteq \sigma_1 \sigma_2$ -Cl(W) $\subseteq V$. Since F is upper weakly (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(W); hence $F(U) \subseteq V$. This shows that F is upper (τ_1, τ_2) -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact [4] if every cover of X by $\tau_1\tau_2$ -open sets of X has a finite subcover.

Definition 3.2. [6] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) regular if for each $\tau_1\tau_2$ -closed set F and each $x \in X - F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Corollary 3.3. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction such that F(x) is $\sigma_1 \sigma_2$ -compact for each point $x \in X$ and (Y, σ_1, σ_2) is (σ_1, σ_2) -regular. Then, the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) F is upper almost (τ_1, τ_2) -continuous;
- (3) F is upper weakly (τ_1, τ_2) -continuous.

Lemma 3.4. If A is a $\tau_1\tau_2$ -regular set of a bitopological space (X, τ_1, τ_2) , then for each $\tau_1\tau_2$ -open set G which intersect A, there exists a $\tau_1\tau_2$ -open set W such that $A \cap W \neq \emptyset$ and $\tau_1\tau_2$ -Cl(W) \subseteq G.

Theorem 3.5. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ such that F(x) is a $\tau_1 \tau_2$ -regular set of Y for each point $x \in X$, the following properties are equivalent:

- (1) F is lower (τ_1, τ_2) -continuous;
- (2) F is lower almost (τ_1, τ_2) -continuous;
- (3) F is lower weakly (τ_1, τ_2) -continuous.

Proof. We show only the implication $(3) \Rightarrow (1)$ since the others are obvious. Suppose that F is lower weakly (τ_1, τ_2) -continuous. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $F(x) \cap V \neq \emptyset$. Since F(x) is $\sigma_1 \sigma_2$ -regular, by Lemma 3.4 there exists a $\sigma_1 \sigma_2$ -open set W of Y such that $F(x) \cap W \neq \emptyset$ and $\sigma_1 \sigma_2$ -Cl $(W) \subseteq V$. Since F is lower weakly (τ_1, τ_2) -continuous, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(z) \cap \sigma_1 \sigma_2$ -Cl $(W) \neq \emptyset$; hence $F(z) \cap V \neq \emptyset$ for each $z \in U$. This shows that F is lower (τ_1, τ_2) -continuous. (τ_1, τ_2) -continuity and weak (τ_1, τ_2) -continuity

Definition 3.6. [7] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) normal if for each pair of disjoint $\tau_1\tau_2$ -closed sets F and F', there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $F \subseteq U$ and $F' \subseteq V$.

Definition 3.7. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (τ_1, τ_2) -closed if F(K) is $\sigma_1 \sigma_2$ -closed in Y for every $\tau_1 \tau_2$ -closed set K of X.

Theorem 3.8. If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a closed valued multifunction and (Y, σ_1, σ_2) is a (σ_1, σ_2) -normal space, then the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) F is upper almost (τ_1, τ_2) -continuous;
- (3) F is upper weakly (τ_1, τ_2) -continuous.

Proof. As in Theorem 3.1, we prove only the implication $(3) \Rightarrow (1)$. Suppose that F is upper weakly (τ_1, τ_2) -continuous. Let $x \in X$ and G be any $\sigma_1\sigma_2$ open set of Y containing F(x). Since F(x) is $\sigma_1\sigma_2$ -closed in Y, by the (σ_1, σ_2) normality of Y there exists a $\tau_1\tau_2$ -open set V of X such that $F(x) \subseteq V \subseteq$ $\sigma_1\sigma_2$ -Cl $(V) \subseteq G$. Since F is upper weakly (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Cl $(V) \subseteq G$. This shows that F is upper (τ_1, τ_2) -continuous.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [2] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) continuity, Eur. J. Pure Appl. Math., **14**, no. 4, (2021), 1212–1225.
- [3] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [4] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Comput. Sci., **18**, (2018), 282–293.
- [5] C. Boonpok, *M*-continuous functions in biminimal structure spaces, Far East J. Math. Sci., 43, no. 1, (2010), 41–58.
- [6] M. Chiangpradit, S. Sompong and C. Boonpok, On characterizations of (τ_1, τ_2) -regular spaces, Int. J. Math. Comput. Sci., **19**, no. 4, 1329–1334.
- [7] M. Chiangpradit, S. Sompong and C. Boonpok, On characterizations of (τ_1, τ_2) -normal spaces, Int. J. Math. Comput. Sci., **19**, no. 4, 1315–1320.
- [8] T. Duangphui, C. Boonpok, C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1165–1174.
- [9] C. Klanarong, S. Sompong, C. Boonpok, Upper and lower almost (τ_1, τ_2) -continuous multifunctions, Eur. J. Pure Appl. Math., **17**, no. 2, (2024), 1244–1253.
- [10] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, Journal of Mathematics, (2020), 4020971.
- [11] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68, (1961), 44–46.
- [12] V. Popa, T. Noiri, On weakly (τ, m) -continuous functions, Rend. Circ. Mat. Palermo (2), **51**, (2002), 295–316.
- [13] V. Popa, T. Noiri, On upper and lower weakly α-continuous multifunctions, Novi Sad J. Math., 32, no. 1, (2002), 7–24.

1326

- [14] V. Popa, T. Noiri, On upper and lower weakly β-continuous multifunctions, Annales Univ. Sci. Budapest, 43, (2000), 25–48.
- [15] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital., (5), 15(A), (1978), 379–388.
- [16] P. Pue-on, S. Sompong, C. Boonpok, Upper and lower (τ_1, τ_2) -continuous multifunctions, Int. J. Math. Comput. Sci., **19**, no. 4, 1305–1310.
- [17] R. E. Smithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70, (1978), 383–390.
- [18] M. Thongmoon, S. Sompong, C. Boonpok, Upper and lower weak (τ_1, τ_2) -continuity, (submitted).
- [19] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.