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Abstract

In this paper, we investigate the relationships between (τ1, τ2)-
continuous multifunctions and weakly (τ1, τ2)-continuous multifunc-
tions.

1 Introduction

The notion of weakly continuous functions was introduced by Levine [11].
Popa and Noiri [12] introduced the notion of weakly (τ,m)-continuous func-
tions as functions from a topological space into a set satisfying some min-
imal conditions and investigated several characterizations of weakly (τ,m)-
continuous functions. Duangphui et al. [8] introduced and studied the notion

Key words and phrases: (τ1, τ2)-continuous multifunction, weakly
(τ1, τ2)-continuous multifunction.
AMS (MOS) Subject Classifications: 54C08, 54C60, 54E55.
The corresponding author is Butsakorn Kong-ied.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net



1322 B. Kong-ied, S. Sompong, C. Boonpok

of weakly (µ, µ′)(m,n)-continuous functions. Moreover, several characteriza-
tions of pairwise weakly M-continuous functions were presented in [5]. Popa
[15] and Smithson [17] independently introduced the notion of weakly contin-
uous multifunctions. Popa and Noiri [13] introduced a class of multifunctions
called weakly α-continuous multifunctions. Popa and Noiri [14] investigated
some characterizations of weakly β-continuous multifunctions. Laprom et al.
[10] introduced and investigated the concept of almost β(τ1, τ2)-continuous
multifunctions. Viriyapong and Boonpok [19] introduced and studied the no-
tion weakly (τ1, τ2)α-continuous multifunctions. Furthermore, several char-
acterizations of weakly (τ1, τ2)δ-semicontinuous multifunctions and almost
weakly (τ1, τ2)-continuous multifunctions were presented in [3] and [2], re-
spectively. In this paper, we investigate the relationships between (τ1, τ2)-
continuous multifunctions and weakly (τ1, τ2)-continuous multifunctions.

2 Preliminaries

Throughout this paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [4] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [4] of A and is denoted by τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-paracompact
[4] if every cover of A by τ1τ2-open sets of X is refined by a cover of A which
consists of τ1τ2-open sets of X and is τ1τ2-locally finite in X . A subset A of
a bitopological space (X, τ1, τ2) is said to be τ1τ2-regular [4] if for each x ∈ A

and each τ1τ2-open set U of X containing x, there exists a τ1τ2-open set V

of X such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U .

Lemma 2.1. [4] If A is a τ1τ2-regular τ1τ2-paracompact set of a bitopological
space (X, τ1, τ2) and U is a τ1τ2-open neighbourhood of A, then there exists
a τ1τ2-open set V of X such that A ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U .

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For
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a multifunction F : X → Y , following [1] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each
A ⊆ X , F (A) = ∪x∈AF (x).

A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper (τ1, τ2)-
continuous [16] (resp. upper almost (τ1, τ2)-continuous [9],upper weakly (τ1, τ2)-
continuous [18]) at a point x ∈ X if for each σ1σ2-open set V of Y con-
taining F (x), there exists a τ1τ2-open set U of X containing x such that
F (U) ⊆ V (resp. F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )), F (U) ⊆ σ1σ2-Cl(V )).
A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper (τ1, τ2)-
continuous (resp. upper almost (τ1, τ2)-continuous, upper weakly (τ1, τ2)-
continuous) if F has this property at each point of X . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower (τ1, τ2)-continuous [16] (resp.
lower almost (τ1, τ2)-continuous [9],lower weakly (τ1, τ2)-continuous [18]) at
a point x ∈ X if for each σ1σ2-open set V of Y such that F (x)∩V 6= ∅, there
exists a τ1τ2-open set U of X containing x such that F (z) ∩ V 6= ∅ (resp.
F (z) ∩ σ1σ2-Int(σ1σ2-Cl(V )) 6= ∅, F (z) ∩ σ1σ2-Cl(V ) 6= ∅) for each z ∈ U .
A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower (τ1, τ2)-
continuous (resp. lower almost (τ1, τ2)-continuous, lower weakly (τ1, τ2)-
continuous) if F has this property at each point of X .

3 (τ1, τ2)-continuity and weak (τ1, τ2)-continuity

In this section, we investigate the relationships between (τ1, τ2)-continuous
multifunctions and weakly (τ1, τ2)-continuous multifunctions.

Theorem 3.1. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) such that
F (x) is a τ1τ2-regular τ1τ2-paracompact set of Y for each point x ∈ X, the
following properties are equivalent:

(1) F is upper (τ1, τ2)-continuous;

(2) F is upper almost (τ1, τ2)-continuous;

(3) F is upper weakly (τ1, τ2)-continuous.

Proof. We show only the implication (3) ⇒ (1) since the others are obvi-
ous. Suppose that F is upper weakly (τ1, τ2)-continuous. Let x ∈ X and
V be any σ1σ2-open set of Y such that F (x) ⊆ V . Since F (x) is τ1τ2-
regular τ1τ2-paracompact, by Lemma 2.1 there exists a σ1σ2-open set W
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of Y such that F (x) ⊆ W ⊆ σ1σ2-Cl(W ) ⊆ V . Since F is upper weakly
(τ1, τ2)-continuous, there exists a τ1τ2-open set U of X containing x such
that F (U) ⊆ σ1σ2-Cl(W ); hence F (U) ⊆ V . This shows that F is upper
(τ1, τ2)-continuous.

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [4]
if every cover of X by τ1τ2-open sets of X has a finite subcover.

Definition 3.2. [6] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-
regular if for each τ1τ2-closed set F and each x ∈ X − F , there exist disjoint
τ1τ2-open sets U and V such that x ∈ U and F ⊆ V .

Corollary 3.3. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that
F (x) is σ1σ2-compact for each point x ∈ X and (Y, σ1, σ2) is (σ1, σ2)-regular.
Then, the following properties are equivalent:

(1) F is upper (τ1, τ2)-continuous;

(2) F is upper almost (τ1, τ2)-continuous;

(3) F is upper weakly (τ1, τ2)-continuous.

Lemma 3.4. If A is a τ1τ2-regular set of a bitopological space (X, τ1, τ2),
then for each τ1τ2-open set G which intersect A, there exists a τ1τ2-open set
W such that A ∩W 6= ∅ and τ1τ2-Cl(W ) ⊆ G.

Theorem 3.5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) such that
F (x) is a τ1τ2-regular set of Y for each point x ∈ X, the following properties
are equivalent:

(1) F is lower (τ1, τ2)-continuous;

(2) F is lower almost (τ1, τ2)-continuous;

(3) F is lower weakly (τ1, τ2)-continuous.

Proof. We show only the implication (3) ⇒ (1) since the others are obvious.
Suppose that F is lower weakly (τ1, τ2)-continuous. Let x ∈ X and V be any
σ1σ2-open set of Y such that F (x) ∩ V 6= ∅. Since F (x) is σ1σ2-regular, by
Lemma 3.4 there exists a σ1σ2-open set W of Y such that F (x) ∩ W 6= ∅
and σ1σ2-Cl(W ) ⊆ V . Since F is lower weakly (τ1, τ2)-continuous, there
exists a τ1τ2-open set U of X containing x such that F (z)∩σ1σ2-Cl(W ) 6= ∅;
hence F (z) ∩ V 6= ∅ for each z ∈ U . This shows that F is lower (τ1, τ2)-
continuous.
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Definition 3.6. [7] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-
normal if for each pair of disjoint τ1τ2-closed sets F and F ′, there exist
disjoint τ1τ2-open sets U and V such that F ⊆ U and F ′ ⊆ V .

Definition 3.7. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
(τ1, τ2)-closed if F (K) is σ1σ2-closed in Y for every τ1τ2-closed set K of X.

Theorem 3.8. If F : (X, τ1, τ2) → (Y, σ1, σ2) is a closed valued multifunc-
tion and (Y, σ1, σ2) is a (σ1, σ2)-normal space, then the following properties
are equivalent:

(1) F is upper (τ1, τ2)-continuous;

(2) F is upper almost (τ1, τ2)-continuous;

(3) F is upper weakly (τ1, τ2)-continuous.

Proof. As in Theorem 3.1, we prove only the implication (3) ⇒ (1). Suppose
that F is upper weakly (τ1, τ2)-continuous. Let x ∈ X and G be any σ1σ2-
open set of Y containing F (x). Since F (x) is σ1σ2-closed in Y , by the (σ1, σ2)-
normality of Y there exists a τ1τ2-open set V of X such that F (x) ⊆ V ⊆
σ1σ2-Cl(V ) ⊆ G. Since F is upper weakly (τ1, τ2)-continuous, there exists a
τ1τ2-open set U of X containing x such that F (U) ⊆ σ1σ2-Cl(V ) ⊆ G. This
shows that F is upper (τ1, τ2)-continuous.
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