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Abstract

In this paper, we introduce the notion of almost (τ1, τ2)-normal
spaces. We also investigate some properties of almost (τ1, τ2)-normal
spaces.

1 Introduction

It is well known that various types of separation axioms play a significant
role in the theory of classical point set topology. In literature, separation
axioms have been studied by many mathematicians. In 1971, Viglino [17]
introduced the notion of seminormal spaces. Singal and Arya [14] intro-
duced the class of almost normal spaces and proved that a space is normal
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if and only if it is both a seminormal space and an almost normal space.
In 1995, Paul and Bhattacharyya [12] introduced and studied the notion
of p-normal spaces. Singal and Singal [13] introduced a new weak form of
normal spaces called mildly normal spaces. Navalagi [10] have continued
the study of further properties of p-normal spaces and also introduced and
studied mildly p-normal (resp. almost p-normal) spaces which are general-
izations of both mildly normal (resp. almost normal) spaces and p-normal
spaces. Park [11] obtained some characterizations of almost p-normal spaces
and mildly p-normal spaces. On the other hand, the notions of δp-normal
spaces, almost δp-normal spaces and mildly δp-normal spaces were intro-
duced by Ekici and Noiri [7]. Buadong et al. [5] introduced and discussed
new separation axioms in generalized topology and minimal structure spaces.
Srisarakham and Boonpok [15] studied some weak separation axioms by uti-
lizing δp(Λ, s)D-sets. In [2], the present authors studied some properties
of (Λ, sp)-open sets. Boonpok and Viriyapong [1] introduced and investi-
gated some weak separation axioms by utilizing the notions of (Λ, sp)-open
sets and the (Λ, sp)-closure operator. Moreover, some properties of µ(m,n)-
normal spaces, (Λ, p)-normal spaces and SΛs-normal spaces were presented
in [16], [9] and [8], respectively. In this paper, we introduce the notion of
almost (τ1, τ2)-normal spaces. Furthermore, we investigate some properties
of almost (τ1, τ2)-normal spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [4] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [4] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
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(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X − A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-
open [19] (resp. (τ1, τ2)s-open [3], (τ1, τ2)p-open [3], (τ1, τ2)β-open [3]) if A =
τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). A subset A of a bitopological space
(X, τ1, τ2) is said to be generalized (τ1, τ2)-closed (briefly, g-(τ1, τ2)-closed)
[18] if τ1τ2-Cl(A) ⊆ U whenever A ⊆ U and U is τ1τ2-open. A subset A is
called g-(τ1, τ2)-open [18] if X −A is g-(τ1, τ2)-closed.

Lemma 2.2. [18] A subset A of a bitopological space (X, τ1, τ2) is g-(τ1, τ2)-
open if and only if F ⊆ τ1τ2-Int(A) whenever F ⊆ A and F is τ1τ2-closed.

A subset A of a bitopological space (X, τ1, τ2) is said to be regular general-
ized (τ1, τ2)-closed (briefly, rg-(τ1, τ2)-closed) [6] if τ1τ2-Cl(A) ⊆ U whenever
A ⊆ U and U is (τ1, τ2)r-open. A subset A is called rg-(τ1, τ2)-open [6] if
X − A is rg-(τ1, τ2)-closed.

Lemma 2.3. [6] A subset A of a bitopological space (X, τ1, τ2) is rg-(τ1, τ2)-
open if and only if F ⊆ τ1τ2-Int(A) whenever F ⊆ A and F is τ1τ2-closed.

3 Almost (τ1, τ2)-normal spaces

In this section, we introduce the notion of almost (τ1, τ2)-normal spaces.
Moreover, we investigate some properties of almost (τ1, τ2)-normal spaces.

Definition 3.1. A bitopological space (X, τ1, τ2) is said to be almost (τ1, τ2)-
normal if for each τ1τ2-closed set A and each (τ1, τ2)r-closed set B such that
A∩B = ∅, there exist disjoint τ1τ2-open sets U and V such that A ⊆ U and
B ⊆ V .

Theorem 3.2. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is almost (τ1, τ2)-normal;
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(2) for each τ1τ2-closed set A and each (τ1, τ2)r-closed set B such that

A ∩ B = ∅,

there exist disjoint g-(τ1, τ2)-open sets U and V such that A ⊆ U and
B ⊆ V ;

(3) for each τ1τ2-closed set A and each (τ1, τ2)r-closed set B such that

A ∩ B = ∅,

there exist disjoint rg-(τ1, τ2)-open sets U and V such that A ⊆ U and
B ⊆ V ;

(4) for each τ1τ2-closed set F and each (τ1, τ2)r-open set U containing F ,
there exists a rg-(τ1, τ2)-open set V such that F ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ U ;

(5) for each rg-(τ1, τ2)-closed set F and each (τ1, τ2)r-open set U contain-
ing F , there exists a τ1τ2-open set V such that τ1τ2-Cl(F ) ⊆ V ⊆

τ1τ2-Cl(V ) ⊆ U ;

(6) for each rg-(τ1, τ2)-closed set F and each (τ1, τ2)r-open set U containing
F , there exists a g-(τ1, τ2)-open set V such that τ1τ2-Cl(F ) ⊆ V ⊆

τ1τ2-Cl(V ) ⊆ U ;

(7) for each rg-(τ1, τ2)-closed set F and each (τ1, τ2)r-open set U containing
F , there exists a rg-(τ1, τ2)-open set V such that τ1τ2-Cl(F ) ⊆ V ⊆

τ1τ2-Cl(V ) ⊆ U .

Proof. It is obvious that (1) ⇒ (2) ⇒ (3) and (5) ⇒ (6) ⇒ (7) ⇒ (4).
(3) ⇒ (4): Let F be a τ1τ2-closed set and U be a (τ1, τ2)r-open set

containing F . Then, F ∩ (X − U) = ∅ and by (3), there exist disjoint rg-
(τ1, τ2)-open sets V and W such that F ⊆ V and X − U ⊆ W . By Lemma
2.3, we have X − U ⊆ τ1τ2-Int(W ) and V ∩ τ1τ2-Int(W ) = ∅. Thus,

τ1τ2-Cl(V ) ∩ τ1τ2-Int(W ) = ∅

and hence F ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ X − τ1τ2-Int(W ) ⊆ U .
(4) ⇒ (1): Let A be any τ1τ2-closed set and B be any (τ1, τ2)r-closed set

such that A ∩ B = ∅. Then, X − B is a (τ1, τ2)r-open set containing A and
there exists a rg-(τ1, τ2)-open sets U such that A ⊆ U ⊆ τ1τ2-Cl(U) ⊆ X−B.
Put V = τ1τ2-Int(U) and W = X − τ1τ2-Cl(U). Then, V and W are disjoint
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τ1τ2-open sets such that A ⊆ V and B ⊆ W . This shows that (X, τ1, τ2) is
almost (τ1, τ2)-normal.

(1) ⇒ (5): Let F be a rg-(τ1, τ2)-closed set and U be a (τ1, τ2)r-open set
containing F . Then, τ1τ2-Cl(F ) ⊆ U and hence τ1τ2-Cl(F ) ∩ (X − U) = ∅.
By (1), there exist disjoint τ1τ2-open sets V and W such that τ1τ2-Cl(F ) ⊆ V

and X − U ⊆ W . Thus, τ1τ2-Cl(F ) ⊆ V ⊆ τ1τ2-Cl(V ) ⊆ X −W ⊆ U .

Definition 3.3. A bitopological space (X, τ1, τ2) is said to be mildly (τ1, τ2)-
normal if for every pair of disjoint (τ1, τ2)r-closed sets A and B, there exist
disjoint τ1τ2-open sets U and V such that A ⊆ U and B ⊆ V .

Theorem 3.4. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is mildly (τ1, τ2)-normal;

(2) for any disjoint (τ1, τ2)r-closed sets A and B, there exist disjoint g-
(τ1, τ2)-open sets U and V such that A ⊆ U and B ⊆ V ;

(3) for any disjoint (τ1, τ2)r-closed sets A and B, there exist disjoint rg-
(τ1, τ2)-open sets U and V such that A ⊆ U and B ⊆ V ;

(4) for each (τ1, τ2)r-closed set F and each (τ1, τ2)r-open set U containing
F , there exists a g-(τ1, τ2)-open set V such that F ⊆ V ⊆ τ1τ2-Cl(V ) ⊆
U ;

(5) for each (τ1, τ2)r-closed set F and each (τ1, τ2)r-open set U containing
F , there exists a rg-(τ1, τ2)-open set V such that F ⊆ V ⊆ τ1τ2-Cl(V ) ⊆
U .

Proof. The proof is similar to that of Theorem 3.2.
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