

On almost (τ_1, τ_2) -regular spaces

Nipaporn Chutiman¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: nipaporn.c@msu.ac.th, sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received March 25, 2024, Accepted May 19, 2024, Published June 1, 2024)

Abstract

In this paper, we introduce the notion of almost (τ_1, τ_2) -regular spaces. Furthermore, we investigate some characterizations of almost (τ_1, τ_2) -regular spaces.

1 Introduction

Separation axioms are one among the most common, important and interesting ideas in topology. Some separation axioms were introduced using generalized open sets. In 1969, Sinnal and Arya [13] defined a new separation axiom called almost regularity which is weaker than regularity. In 1983, El-Deeb et al. [7] introduced and studied the notion of p-regular spaces by using preopen

Key words and phrases: $\tau_1\tau_2$ -open set, almost (τ_1, τ_2) -regular space. AMS (MOS) Subject Classifications: 54D15, 54E55. The corresponding author is Nipaporn Chutiman. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

sets. In 1990, Malghan and Navalagi [9] introduced and investigated the concept of almost p-regular spaces as a generalization of p-regularity. In 1998, Noiri [10] defined a new class of sets called rgp-closed sets and investigated some characterizations of almost p-regular spaces by utilizing rqp-closed sets. Buadong et al. [5] introduced and studied new separation axioms in generalized topology and minimal structure spaces. Srisarakham and Boonpok [14] investigated some weak separation axioms by utilizing $\delta p(\Lambda, s)\mathcal{D}$ -sets. In [2], the present authors studied some properties of (Λ, sp) -open sets. Boonpok and Viriyapong [1] introduced and studied some weak separation axioms by utilizing the notions of (Λ, sp) -open sets and the (Λ, sp) -closure operator. In 2012, Torton et al. [15] introduced and investigated the notion of $\mu_{(m,n)}$ -regular spaces. Furthermore, several characterizations of (Λ, p) -regular spaces and $S\Lambda_s$ -regular spaces were presented in [11] and [8], respectively. Roy [12] obtained some characterizations of almost μ -regular spaces. In this paper, we introduce the notion of almost (τ_1, τ_2) -regular spaces. Moreover, we discuss some characterizations of almost (τ_1, τ_2) -regular spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [4] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [4] of A and is denoted by $\tau_1\tau_2$ -Interior [4] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 \text{-}Cl(A) \subseteq \tau_1 \tau_2 \text{-}Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).

(5)
$$\tau_1 \tau_2 - Cl(X - A) = X - \tau_1 \tau_2 - Int(A)$$
.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [17] (resp. $(\tau_1, \tau_2)s$ -open [3], $(\tau_1, \tau_2)p$ -open [3], $(\tau_1, \tau_2)\beta$ -open [3]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [16] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is called $\alpha(\tau_1, \tau_2)$ -closed.

Definition 2.2. [6] A subset A of a bitopological space (X, τ_1, τ_2) is said to be regular generalized (τ_1, τ_2) -closed (briefly, rg- (τ_1, τ_2) -closed) if $\tau_1\tau_2$ - $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(\tau_1, \tau_2)r$ -open.

Definition 2.3. [6] A subset A of a bitopological space (X, τ_1, τ_2) is said to be regular generalized (τ_1, τ_2) -open (briefly, rg- (τ_1, τ_2) -open) if X - A is regular generalized (τ_1, τ_2) -closed.

Lemma 2.4. [6] A subset A of a bitopological space (X, τ_1, τ_2) is rg- (τ_1, τ_2) open if and only if $F \subseteq \tau_1\tau_2$ -Int(A) whenever $F \subseteq A$ and F is $(\tau_1, \tau_2)r$ -closed.

3 Almost (τ_1, τ_2) -regular spaces

In this paper, we introduce the notion of almost (τ_1, τ_2) -regular spaces. We also investigate some characterizations of almost (τ_1, τ_2) -regular spaces.

Definition 3.1. A bitopological space (X, τ_1, τ_2) is said to be almost (τ_1, τ_2) -regular if for each (τ_1, τ_2) r-closed set F and each $x \notin F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Theorem 3.2. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is almost (τ_1, τ_2) -regular;
- (2) for each $x \in X$ and each $(\tau_1, \tau_2)r$ -open set U with $x \in U$, there exists a $\tau_1\tau_2$ -open set V such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$;
- (3) for each $(\tau_1, \tau_2)r$ -closed set F of X,

$$\cap \{\tau_1\tau_2\text{-}Cl(V) \mid F \subseteq V \text{ and } V \text{ is } \tau_1\tau_2\text{-}open\} = F;$$

- (4) for each subset A of X and each $(\tau_1, \tau_2)r$ -open set U of X such that $A \cap U \neq \emptyset$, there exists a $\tau_1\tau_2$ -open set V such that $A \cap V \neq \emptyset$ and $\tau_1\tau_2$ - $Cl(V) \subseteq U$;
- (5) for each nonempty subset A of X and each $(\tau_1, \tau_2)r$ -closed set F such that $A \cap F = \emptyset$, there exist $\tau_1 \tau_2$ -open sets U and V such that $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$;
- (6) for each $(\tau_1, \tau_2)r$ -closed set F and $x \notin F$, there exist a $\tau_1\tau_2$ -open set U and a rg- (τ_1, τ_2) -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$;
- (7) for each subset A of X and each $(\tau_1, \tau_2)r$ -closed set F such that $A \cap F = \emptyset$, there exist a $\tau_1\tau_2$ -open set U and a rg- (τ_1, τ_2) -open set V such that $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.

Proof. (1) \Rightarrow (2): Let U be a $(\tau_1, \tau_2)r$ -open set with $x \in U$. Then, X - U is $(\tau_1, \tau_2)r$ -closed and $x \notin X - U$. Then by (1), there exist disjoint $\tau_1\tau_2$ -open sets V and W such that $x \in V$ and $X - U \subseteq W$. Thus,

$$x \in V \subseteq \tau_1 \tau_2\text{-Cl}(V) \subseteq \tau_1 \tau_2\text{-Cl}(X - W) = X - W \subseteq U.$$

- $(2) \Rightarrow (3)$: Let F be a $(\tau_1, \tau_2)r$ -closed set and $x \notin X F$. By (2), there exists a $\tau_1\tau_2$ -open set U such that $x \in U \subseteq \tau_1\tau_2$ -Cl $(U) \subseteq X F$. Therefore, $F \subseteq X \tau_1\tau_2$ -Cl(U) = V. Since V is $\tau_1\tau_2$ -open and $U \cap V = \emptyset$. Thus, $x \notin \tau_1\tau_2$ -Cl(V) and hence $F \supseteq \cap \{\tau_1\tau_2\text{-Cl}(V) \mid F \subseteq V \text{ and } V \text{ is } \tau_1\tau_2\text{-open}\}$.
- $(3) \Rightarrow (4)$: Let A be a subset of X and U be a $(\tau_1, \tau_2)r$ -open set such that $A \cap U \neq \emptyset$. Let $x \in A \cap U$. Then, we have $x \notin X U$. Thus by (3), there exists a $\tau_1\tau_2$ -open set W such that $X U \subseteq W$ and $x \notin \tau_1\tau_2$ -Cl(W). Put $V = X \tau_1\tau_2$ -Cl(W) which is a $\tau_1\tau_2$ -open set containing x and hence $A \cap V \neq \emptyset$. Now, $V \subseteq X W$ and so $\tau_1\tau_2$ -Cl(V) $\subseteq X W \subseteq U$.
- $(4) \Rightarrow (5)$: Let A be a nonempty subset of X and F be a $(\tau_1, \tau_2)r$ -closed set such that $A \cap F = \emptyset$. Then, X F is $(\tau_1, \tau_2)r$ -open and $A \cap (X F) \neq \emptyset$. By (4), there exists a $\tau_1\tau_2$ -open set V such that $A \cap V \neq \emptyset$ and

$$\tau_1 \tau_2$$
-Cl $(V) \subseteq X - F$.

If we put $W = X - \tau_1 \tau_2$ -Cl(V), then $F \subseteq W$ and $W \cap V = \emptyset$.

- $(5) \Rightarrow (1)$: Let F be a $(\tau_1, \tau_2)r$ -closed set not containing x. Then, we have $F \cap \{x\} = \emptyset$. Thus by (5), there exist $\tau_1 \tau_2$ -open sets V and W such that $x \in V$, $F \subseteq W$ and $V \cap W = \emptyset$.
 - $(1) \Rightarrow (6)$: The proof is obvious.

- $(6) \Rightarrow (7)$: Let A be a subset of X and F be a $(\tau_1, \tau_2)r$ -closed set such that $A \cap F = \emptyset$. Then, for each $x \in A$, $x \notin F$. By (6), there exist a $\tau_1\tau_2$ -open set U and a rg- (τ_1, τ_2) -open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \emptyset$. Thus, $A \cap U \neq \emptyset$, $F \subseteq V$ and $U \cap V = \emptyset$.
- $(7) \Rightarrow (1)$: Let F be a $(\tau_1, \tau_2)r$ -closed set such that $x \notin F$. Since $\{x\} \cap F = \emptyset$, by (7) there exist a $\tau_1\tau_2$ -open set U and a rg- (τ_1, τ_2) -open set W such that $x \in U$, $F \subseteq W$ and $U \cap W = \emptyset$. Since W is rg- (τ_1, τ_2) -open, by Lemma 2.4, $F \subseteq \tau_1\tau_2$ -Cl(W) = V and $U \cap V = \emptyset$. This shows that (X, τ_1, τ_2) is almost (τ_1, τ_2) -regular.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, C. Viriyapong, Some applications of (Λ, sp) -open sets in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 3, (2022), 878–886.
- [2] C. Boonpok, J. Khampakdee, (Λ, sp) -open sets in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 2, (2022), 572–588.
- [3] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [4] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [5] S. Buadong, C. Viriyapong, C. Boonpok, On generalized topology and minimal structure spaces, Int. J. Math. Anal., 5, no. 31, (2011), 1507– 1516.
- [6] N. Chutiman, S. Sompong, C. Boonpok, On regular generalized (τ_1, τ_2) -closed sets, Int. J. Math. Comput. Sci., **19**, no. 3, (2024), 861–867.
- [7] N. El-Deeb, I. A. Hasanein, A. S. Mashhour, T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27, no. 75, (1983), 311-315.
- [8] J. Khampakdee, C. Boonpok, On $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces, Int. J. Math. Comput. Sci., **19**, no. 1, (2024), 125–129.

- [9] S. R. Malghan, G. B. Navalagi, Almost *p*-regular, *p*-completely regular and almost *p*-completely regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **34**, no. 82, (1990), 317–326.
- [10] T. Noiri, Almost p-regular spaces and some functions, Acta Math. Hungar., **79**, no. 3, (1998), 207–216.
- [11] P. Pue-on, C. Boonpok, On $S\Lambda_s$ -regular spaces and $S\Lambda_s$ -normal spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 295–299.
- [12] B. Roy, Unification of almost regular, almost normal and mildly normal topological spaces, Demonstratio Math., **45**, no. 4, (2012), 963–974.
- [13] M. K. Singal, S. P. Arya, On almost-regular spaces, Glasnik Mat., 4, no. 24, (1969), 89–99.
- [14] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18.** no. 4, (2023), 743–747.
- [15] P. Torton, C. Viriyapong, C. Boonpok, Some separation axioms in bigeneralized topological spaces, Int. J. Math. Anal., 6, no. 56, (2012), 2789–2796.
- [16] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -extremal disconnectedness in bitopological spaces, Int. J. Math. Comput. Sci., **19**, no. 3, (2024), 855–860.
- [17] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.