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Abstract

In this paper, we introduce the notion of almost (τ1, τ2)-regular
spaces. Furthermore, we investigate some characterizations of almost
(τ1, τ2)-regular spaces.

1 Introduction

Separation axioms are one among the most common, important and interest-
ing ideas in topology. Some separation axioms were introduced using general-
ized open sets. In 1969, Sinnal and Arya [13] defined a new separation axiom
called almost regularity which is weaker than regularity. In 1983, El-Deeb et
al. [7] introduced and studied the notion of p-regular spaces by using preopen
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sets. In 1990, Malghan and Navalagi [9] introduced and investigated the con-
cept of almost p-regular spaces as a generalization of p-regularity. In 1998,
Noiri [10] defined a new class of sets called rgp-closed sets and investigated
some characterizations of almost p-regular spaces by utilizing rgp-closed sets.
Buadong et al. [5] introduced and studied new separation axioms in general-
ized topology and minimal structure spaces. Srisarakham and Boonpok [14]
investigated some weak separation axioms by utilizing δp(Λ, s)D-sets. In [2],
the present authors studied some properties of (Λ, sp)-open sets. Boonpok
and Viriyapong [1] introduced and studied some weak separation axioms
by utilizing the notions of (Λ, sp)-open sets and the (Λ, sp)-closure opera-
tor. In 2012, Torton et al. [15] introduced and investigated the notion of
µ(m,n)-regular spaces. Furthermore, several characterizations of (Λ, p)-regular
spaces and SΛs-regular spaces were presented in [11] and [8], respectively.
Roy [12] obtained some characterizations of almost µ-regular spaces. In this
paper, we introduce the notion of almost (τ1, τ2)-regular spaces. Moreover,
we discuss some characterizations of almost (τ1, τ2)-regular spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [4] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [4] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
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(5) τ1τ2-Cl(X − A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-
open [17] (resp. (τ1, τ2)s-open [3], (τ1, τ2)p-open [3], (τ1, τ2)β-open [3]) if A =
τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). A subset A of a bitopological space
(X, τ1, τ2) is said to be α(τ1, τ2)-open [16] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))).
The complement of an α(τ1, τ2)-open set is called α(τ1, τ2)-closed.

Definition 2.2. [6] A subset A of a bitopological space (X, τ1, τ2) is said to be
regular generalized (τ1, τ2)-closed (briefly, rg-(τ1, τ2)-closed) if τ1τ2-Cl(A) ⊆
U whenever A ⊆ U and U is (τ1, τ2)r-open.

Definition 2.3. [6] A subset A of a bitopological space (X, τ1, τ2) is said to be
regular generalized (τ1, τ2)-open (briefly, rg-(τ1, τ2)-open) if X −A is regular
generalized (τ1, τ2)-closed.

Lemma 2.4. [6] A subset A of a bitopological space (X, τ1, τ2) is rg-(τ1, τ2)-
open if and only if F ⊆ τ1τ2-Int(A) whenever F ⊆ A and F is (τ1, τ2)r-closed.

3 Almost (τ1, τ2)-regular spaces

In this paper, we introduce the notion of almost (τ1, τ2)-regular spaces. We
also investigate some characterizations of almost (τ1, τ2)-regular spaces.

Definition 3.1. A bitopological space (X, τ1, τ2) is said to be almost (τ1, τ2)-
regular if for each (τ1, τ2)r-closed set F and each x 6∈ F , there exist disjoint
τ1τ2-open sets U and V such that x ∈ U and F ⊆ V .

Theorem 3.2. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is almost (τ1, τ2)-regular;

(2) for each x ∈ X and each (τ1, τ2)r-open set U with x ∈ U , there exists
a τ1τ2-open set V such that x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ U ;

(3) for each (τ1, τ2)r-closed set F of X,

∩{τ1τ2-Cl(V ) | F ⊆ V and V is τ1τ2-open} = F ;
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(4) for each subset A of X and each (τ1, τ2)r-open set U of X such that
A ∩ U 6= ∅, there exists a τ1τ2-open set V such that A ∩ V 6= ∅ and
τ1τ2-Cl(V ) ⊆ U ;

(5) for each nonempty subset A of X and each (τ1, τ2)r-closed set F such
that A∩F = ∅, there exist τ1τ2-open sets U and V such that A∩U 6= ∅,
F ⊆ V and U ∩ V = ∅;

(6) for each (τ1, τ2)r-closed set F and x 6∈ F , there exist a τ1τ2-open set U
and a rg-(τ1, τ2)-open set V such that x ∈ U , F ⊆ V and U ∩ V = ∅;

(7) for each subset A of X and each (τ1, τ2)r-closed set F such that A∩F =
∅, there exist a τ1τ2-open set U and a rg-(τ1, τ2)-open set V such that
A ∩ U 6= ∅, F ⊆ V and U ∩ V = ∅.

Proof. (1) ⇒ (2): Let U be a (τ1, τ2)r-open set with x ∈ U . Then, X − U is
(τ1, τ2)r-closed and x 6∈ X − U . Then by (1), there exist disjoint τ1τ2-open
sets V and W such that x ∈ V and X − U ⊆ W . Thus,

x ∈ V ⊆ τ1τ2-Cl(V ) ⊆ τ1τ2-Cl(X −W ) = X −W ⊆ U.

(2) ⇒ (3): Let F be a (τ1, τ2)r-closed set and x 6∈ X − F . By (2), there
exists a τ1τ2-open set U such that x ∈ U ⊆ τ1τ2-Cl(U) ⊆ X − F . Therefore,
F ⊆ X − τ1τ2-Cl(U) = V . Since V is τ1τ2-open and U ∩ V = ∅. Thus,
x 6∈ τ1τ2-Cl(V ) and hence F ⊇ ∩{τ1τ2-Cl(V ) | F ⊆ V and V is τ1τ2-open}.

(3) ⇒ (4): Let A be a subset of X and U be a (τ1, τ2)r-open set such
that A ∩ U 6= ∅. Let x ∈ A ∩ U . Then, we have x 6∈ X − U . Thus by (3),
there exists a τ1τ2-open set W such that X − U ⊆ W and x 6∈ τ1τ2-Cl(W ).
Put V = X − τ1τ2-Cl(W ) which is a τ1τ2-open set containing x and hence
A ∩ V 6= ∅. Now, V ⊆ X −W and so τ1τ2-Cl(V ) ⊆ X −W ⊆ U .

(4) ⇒ (5): Let A be a nonempty subset of X and F be a (τ1, τ2)r-closed
set such that A∩F = ∅. Then, X−F is (τ1, τ2)r-open and A∩ (X−F ) 6= ∅.
By (4), there exists a τ1τ2-open set V such that A ∩ V 6= ∅ and

τ1τ2-Cl(V ) ⊆ X − F.

If we put W = X − τ1τ2-Cl(V ), then F ⊆ W and W ∩ V = ∅.
(5) ⇒ (1): Let F be a (τ1, τ2)r-closed set not containing x. Then, we

have F ∩ {x} = ∅. Thus by (5), there exist τ1τ2-open sets V and W such
that x ∈ V , F ⊆ W and V ∩W = ∅.

(1) ⇒ (6): The proof is obvious.
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(6) ⇒ (7): Let A be a subset of X and F be a (τ1, τ2)r-closed set such
that A∩F = ∅. Then, for each x ∈ A, x 6∈ F . By (6), there exist a τ1τ2-open
set U and a rg-(τ1, τ2)-open set V such that x ∈ U , F ⊆ V and U ∩ V = ∅.
Thus, A ∩ U 6= ∅, F ⊆ V and U ∩ V = ∅.

(7) ⇒ (1): Let F be a (τ1, τ2)r-closed set such that x 6∈ F . Since {x}∩F =
∅, by (7) there exist a τ1τ2-open set U and a rg-(τ1, τ2)-open set W such that
x ∈ U , F ⊆ W and U ∩W = ∅. Since W is rg-(τ1, τ2)-open, by Lemma 2.4,
F ⊆ τ1τ2-Cl(W ) = V and U ∩ V = ∅. This shows that (X, τ1, τ2) is almost
(τ1, τ2)-regular.
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