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Abstract

Fisher information is an essential element in statistical modeling
and is required for a matrix-based parameter estimator to find the
optimal solution. The information matrix is calculated by subtract-
ing the expectation value matrix of the function to be maximized by
a given amount. Positive semidefiniteness is observed in this matrix
with regard to each parameter value. The Fisher information matrix
(FIM) shows how parameters in a probabilistic model are related to
each other. It is an inherent consequence of the procedure of maximum
likelihood estimation (MLE). In this paper, we perform an analytical
evaluation of the FIM for Generalized Poisson Regression (GPR). In
the previous stage, we analyzed the expectation of the second deriva-
tive, where the evaluation function is the log-likelihood function for
the GPR model.
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1 Introduction

Critical to statistical testing, the FIM is utilized to identify optimal experi-
mental conditions, compute the Wald test statistic, and ascertain the classical
asymptotic distribution [1]. It also facilitates the evaluation of parameter es-
timate accuracy at infinity. In addition, the researchers have employed the
FIM to examine specific Riemannian metrics on complex manifolds [2], to
deduce post-model selection [3], and to ascertain the asymptotic distribution
for the variance components in the mixed model [4]. The precise calculation,
however, is frequently not trivial. Latent variable models, which include un-
observed variables and are also known as incomplete data models, pose a
significant challenge for precise calculation. Despite the fact that these mod-
els are becoming more prevalent in numerous application domains, including
genomics [5], ecology [6], and ecophysiology [7], this facilitates a more com-
prehensive analysis of diverse sources of variability and, if necessary, a more
precise identification of the established mechanisms that underlie the data.

The Fisher information matrix shows how parameters in a probabilistic
model are related to each other. It is a natural result of the maximum like-
lihood estimation (MLE) process [8]. Thus the purpose of this study is to
perform an analytical evaluation of the FIM for Generalized Poisson Regres-
sion based on log-likelihood function. In the previous stage, we analyzed the
expectation of the second derivative, where the evaluation function is the
log-likelihood function for the GPR model.

2 Generalized Poisson Regression

In accordance with the following probability function, a set of data is said to
follow the Generalized Poisson Distribution:

p (yi;ψi, ς) =

(

ψi

ςψi + 1

)yi (ςyi + 1)yi−1

yi!
e
−

ψi(ςyi+1)
ςψi+1 , i = 1, 2, 3, ..., n, (2.1)

where ψi = exβ = e
β0+ Σ

j=1
βjxji

[9].

3 Maximum Likelihood Estimation (MLE)

Parameter estimation with MLE is a dependable and potent statistical tech-
nique [10, 11]. The log-likelihood function is an essential component of the
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MLE procedure. GPR’s log-likelihood function is provided for the purposes
of this article.
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(3.2)

First derivative calculation is necessary for the log likelihood function to be
maximized. Next, several theorems are presented as analytical justifications
by analysis of the expected value of second derivative to build FIM. For
a special case, when the expected value of the second partial derivative of

the parameter must be determined, the E
[

y2i [yi−1]

(1+ςyi)
2

]

value is ascertained for

special events, using the definition of moments and recurrence relations.

Theorem 3.1. Suppose that the second derivative of β0 of equation 3.2 is

known. Then

E

[

∂2ι (β, ς)

∂β0
2

]

=
n

Σ
i=1

−ψi

(ςψi + 1)3
. (3.3)

Proof.

E

[

∂2ι (β, ς)

∂β0
2

]

=
n

Σ
i=1

(

E

(

ςψ2
i

(ςψi + 1)3

)

−E

(

2ςψiyi

(ςψi + 1)3

)

+ E

(

−ψi

(ςψi + 1)3

))

=
n

Σ
i=1

−ψi + ςψ2
i − 2ςψ2

i

(1 + ςψi)
3 =

n

Σ
i=1

−ψi (1 + ςψi)

(1 + ςψi)
3 =

n

Σ
i=1

−ψi

(ςψi + 1)2
.

Theorem 3.2. Suppose that the second derivative of βk of equation 3.2 is

known. Then

E

[

∂2ι (β, ς)

∂βk
2

]

=
n

Σ
i=1

− (xki)
2
ψi

(ςψi + 1)3
, for k = 1, 2, 3, . . . , p. (3.4)

Proof. The proof is similar to that of theorem 3.1.

Theorem 3.3. Suppose that the second derivative of βmβ0 or βkβ0 of equa-

tion 3.2 is known. Then

E

[

∂2ι (β, ς)

∂β0∂βm

]

= E

[

∂2ι (β, ς)

∂βk∂β0

]

=
n

Σ
i=1

−xmiψi

(ςψi + 1)2
, for m = k = 1, 2, 3, . . . , p.

(3.5)
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Proof. The proof is similar to that of theorem 3.1.

Theorem 3.4. Suppose that the second derivative of βmβk of equation 3.2

is known. Then

E

[

∂2ι (β, ς)

∂βk∂βm

]

=
n

Σ
i=1

−xmixkiψi

(ςψi + 1)2
, (3.6)

for m = 1, 2, 3, ..., p and k = 1, 2, 3, ..., p, with m 6= k.

Proof. The proof is similar to that of theorem 3.1.

Theorem 3.5. Suppose that the second derivative of ςβ0 of equation 3.2 is

known. Then

E

[

∂2ι (β, ς)

∂β0∂ς

]

= E

[

∂2ι (β, ς)

∂ς∂β0

]

= 0. (3.7)

Proof. The proof is similar to that of theorem 3.1.

Theorem 3.6. Suppose that the second derivative of βmς or βkς of equation

3.2 is known. Then

E

[

∂2ι (β, ς)

∂ς∂βm

]

= E

[

∂2ι (β, ς)

∂βk∂ς

]

= 0, m = k = 1, 2, 3, ..., p. (3.8)

Proof. The proof is similar to that of theorem 3.1.

Then, to get the expectation of the second derivative of ς, the E
[

y2i (yi−1)

(ςyi+1)2

]

value is determined using the definition of moment and recurrence relations.

Theorem 3.7. Let µk = E

[

(

y2i (yi−1)

(ςyi+1)2

)k
]

. Then the recurrence relation is

(2k − 1)µk+1 = −
ψ2
i

(ςψi + 1)
µk −

∂µk

∂ς
−
(

2ψ2
i + ςψ3

i

) ∂µk

∂ψi
. (3.9)

Proof. The k-th moment of
(

y2i (yi−1)

(ςyi+1)2

)k

can be written as follows:

µk = E
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y2i (yi − 1)

(ςyi + 1)

2
)k


 = Σ
y

(

y2i (yi − 1)

(ςyi + 1)2

)k (
ψi

ςψi + 1

)yi (ςyi + 1)yi−1

yi!
e
−

ψi(ςyi+1)
ςψi+1

(3.10)
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Then the next step is to look for the derivative of µk with respect to ψi, and
µk with respect to ς. By the substitution process, we obtain the equation

∂µk

∂ς
= (−2k + 1)ψk+1

i +
−2ψi − ςψ2

i

(ςψi + 1)2

(

ψi (ςψi + 1)2
∂µk

∂ψi
+ ψiµk

)

+
ψ2
i

(ςψi + 1)2
µk.

(3.11)

Thus we have proven that (2k − 1)µk+1 = −
ψ2
i

(ςψi+1)
µk−

∂µk
∂ς

−(2ψ2
i + ςψ3

i )
∂µk
∂ψi

.

Next, we can find E
[

y2i (yi−1)

(ςyi+1)2

]

by substituting k = 0 in equation 3.9 and the

result is

E

[

y2i (yi − 1)

(ςyi + 1)2

]

= µ1 =
ψ2
i

ςψi + 1
. (3.12)

Theorem 3.8. Suppose the second derivative of ς of equation 3.2 is known.

Then

E

[

∂2ι (β, ς)

∂ς2

]

=
n

Σ
i=1

(

ψ3
i

(ςψi + 1)2
−

ψ2
i

(ςψi + 1)

)

. (3.13)

Proof. The proof is similar to that of theorem 3.1 and substituting equation
3.12 into the solution.

Using the expected value of the second derivative, the FIM may be ex-
pressed as follows:
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(3.14)

The FIM is key in statistical modeling and is especially effective for es-
timation problems when the MLE is nonlinear in form which makes things
very difficult to solve analytically. Therefore, the Fisher Information Matrix
is very useful when used in the numerical optimization of the Fisher-Scoring
Algorithm. Therefore, further research can utilize the Fisher Information
Matrix in algorithms and case studies to gain a clearer understanding of its
performance in applied scenarios.
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