Bounds on Coefficients for a Subclass of Bi-Univalent Functions with Lucas-Balancing Polynomials and Ruscheweyh Derivative Operator

Abdulmtalb Hussen ${ }^{1}$, Moamar M. Alamari ${ }^{2}$
${ }^{1}$ School of Engineering, Math., \& Technology
Navajo Technical University
Crownpoint, NM 87313, USA
${ }^{2}$ Higher Institution of Engineering Technology Zliten, Libya
email: ahussen@navajotech.edu

(Received April 16, 2024, Accepted May 21, 2024, Published June 1, 2024)

Abstract

In this paper, we present a novel subclass of bi-univalent functions, which are connected with both the Ruscheweyh derivative operator and Lucas-Balancing polynomials. We establish bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series for these functions, as well as the Fekete-Szegö inequality. Additionally, through parameter allocation in our primary discoveries, we unveil several fresh results.

1 Introduction

Let \mathcal{A} represent the class of functions f of the form

$$
\begin{equation*}
f(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} \xi^{n} \tag{1.1}
\end{equation*}
$$

Key words and phrases: Lucas-Balancing polynomials, bi-univalent functions, analytic functions, Taylor-Maclaurin coefficients, Fekete-Szegö functional, Ruscheweyh derivative operator.
which are analytic in the open unit disk $\mathbb{U}=\{\xi: \xi \in \mathbb{C}$ and $|\xi|<1\}$, and additionally satisfy the normalization conditions $f(0)=f^{\prime}(0)-1=0$.

Given two functions f and g belonging to the class \mathcal{A}, we say that $f(\xi)$ is subordinate to $g(\xi)$ in the open unit disk \mathbb{U}, denoted as $f(\xi) \prec g(\xi)$, if there exists a Schwarz function $h(\xi)$, which is analytic in \mathbb{U}, satisfying the conditions $h(0)=0$ and $|h(\xi)|<1$ for all $\xi \in \mathbb{U}$, such that $f(\xi)=g(h(\xi))$ holds for all $\xi \in \mathbb{U}$. Moreover, if the function g is univalent in \mathbb{U}, then the following equivalence holds (referenced as [1]:

$$
f(\xi) \prec g(\xi) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Let \mathcal{S} be the set of all functions $f \in \mathcal{A}$ that are univalent within \mathbb{U}. According to the Koebe one-quarter theorem [2], for every function $f \in \mathcal{S}$, there exists an inverse function f^{-1} such that:

$$
f^{-1}(f(\xi))=\xi, \quad \xi \in \mathbb{U}
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and its inverse $g=f^{-1}$ are univalent in \mathbb{U}. Let σ denote the set of such bi-univalent functions in \mathbb{U}, as defined by equation (1.1). Recent studies have introduced various subclasses of σ, aiming to establish bounds for the first two coefficients, $\left|a_{2}\right|$ and $\left|a_{3}\right|$, in the Taylor-Maclaurin series expansion, as well as in the Fekete-Szegö inequality (see [3-13]).

The Hadamard product (or convolution) of $f(\xi)$ and $l(\xi)$, denoted as $f(\xi) * l(\xi)$, can be expressed mathematically as:

$$
(f * l)(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} b_{n} \xi^{n}=(l * f)(\xi) \quad(\xi \in \mathbb{U})
$$

where $l(\xi)=\xi+\sum_{n=2}^{\infty} b_{n} \xi^{n}$ is an analytic function in \mathbb{U}.

Definition 1.1. [14] Let $f \in \mathcal{A}$ denote a function defined by equation (1.1). The Ruscheweyh derivative operator $\mathcal{R}^{\ell}: \mathcal{A} \rightarrow \mathcal{A}$ is defined as follows:

$$
\begin{equation*}
\mathcal{R}^{\ell} f(\xi)=\frac{\xi\left(\xi^{\ell-1} f(\xi)\right)^{(\ell)}}{\ell!}=\frac{\xi}{(1-\xi)^{\ell+1}} * f(\xi)=\xi+\sum_{n=2}^{\infty} \frac{\Gamma(\ell+n)}{\Gamma(n) \Gamma(\ell+1)} a_{n} \xi^{n} \tag{1.3}
\end{equation*}
$$

where $\ell \in \mathbb{N}_{0}=\{0,1,2, \ldots\}=\mathbb{N} \cup\{0\}, \quad \xi \in \mathbb{U}$.

Behera and Panda [15] recently introduced a novel integer sequence known as Balancing numbers. These numbers are generated by the recurrence relation $B_{n+1}=6 B_{n}-B_{n-1}$ for $n \geq 1$, with initial values $B_{0}=0$ and $B_{1}=1$. This introduction has sparked significant interest among researchers, leading to the exploration of various generalizations. For comprehensive insights into Lucas-Balancing numbers and their extensions, refer to the works cited in [16-24]. Among these extensions, one notable example is the Lucas Balancing polynomial, which is recursively defined as follows:

Definition 1.2. [25] For every complex numbe t and integer $n \geq 2$, LucasBalancing polynomials are recursively defined as such:

$$
\begin{equation*}
C_{n}(t)=6 t C_{n-1}(t)-C_{n-2}(t), \tag{1.4}
\end{equation*}
$$

where the initial conditions are given by:

$$
\begin{equation*}
C_{0}(t)=1, \quad C_{1}(t)=3 t \tag{1.5}
\end{equation*}
$$

By employing the recurrence relation (1.4), we can derive the subsequent expressions:

$$
\begin{equation*}
C_{2}(t)=18 t^{2}-1 \quad C_{3}(t)=108 t^{3}-9 t . \tag{1.6}
\end{equation*}
$$

Lucas-Balancing polynomials, similar to other number polynomials, can be obtained using specific generating functions. An example of such a generating function is represented as follows:

Lemma 1.3. [25] The generating function for Balancing polynomials can be represented as

$$
\begin{equation*}
\mathcal{B}(t, \xi)=\sum_{n=0}^{\infty} C_{n}(t) \xi^{n}=\frac{1-3 t \xi}{1-6 t \xi+\xi^{2}}, \tag{1.7}
\end{equation*}
$$

where t is within the range $[-1,1]$, and ξ is in the open unit disk \mathbb{U}.

2 Coefficient Bounds of the Class $\mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$

Definition 2.1. Let $f \in \sigma$ be given by (1.1), with $\alpha, \mu \in[0,1]$ and $t \in\left(\frac{1}{2}, 1\right]$. We say f is in the class $\mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$ if the following subordinations are satisfied:

$$
\begin{equation*}
(1-\alpha+2 \mu) \frac{\mathcal{R}^{\ell} f(\xi)}{\xi}+(\alpha-2 \mu)\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime}+\mu \xi\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime \prime} \prec \mathcal{B}(t, \xi) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha+2 \mu) \frac{\mathcal{R}^{\ell} g(w)}{w}+(\alpha-2 \mu)\left(\mathcal{R}^{\ell} g(w)\right)^{\prime}+\mu w\left(\mathcal{R}^{\ell} g(w)\right)^{\prime \prime} \prec \mathcal{B}(t, w) \tag{2.9}
\end{equation*}
$$

where the function $g(w)=f^{-1}(w)$ is defined by (1.2) and $\mathcal{B}(t, \xi)$ represents the generating function of the Lucas-Balancing polynomials as given by equation (1.7).

Example 2.1. Let $f \in \sigma$ be a bi-univalent function. It is said to belong to the class $\mathcal{H}_{\sigma}(\alpha, 0, \mathcal{B}(t, \xi))$ if the following subordination conditions hold:

$$
\begin{equation*}
(1-\alpha) \frac{\mathcal{R}^{\ell} f(\xi)}{\xi}+\alpha\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime} \prec \mathcal{B}(t, \xi) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{\mathcal{R}^{\ell} g(w)}{w}+\alpha\left(\mathcal{R}^{\ell} g(w)\right)^{\prime} \prec \mathcal{B}(t, w) \tag{2.11}
\end{equation*}
$$

where the function $g=f^{-1}$ is defined by (1.2).
Example 2.2. Let $f \in \sigma$ be a bi-univalent function. It is said to belong to the class $\mathcal{H}_{\sigma}(1,0, \mathcal{B}(t, \xi))$, if the following subordination conditions hold:

$$
\begin{equation*}
\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime} \prec \mathcal{B}(t, \xi) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{R}^{\ell} g(w)\right)^{\prime} \prec \mathcal{B}(t, w), \tag{2.13}
\end{equation*}
$$

where the function $g=f^{-1}$ is defined by (1.2).
Lemma 2.2. [2] Let Ω be the class of all analytic functions, and let $\omega \in \Omega$ with $\omega(\xi)=\sum_{n=1}^{\infty} \omega_{n} \xi^{n}, \quad \xi \in \mathbb{D}$. Then,

$$
\left|\omega_{1}\right| \leq 1, \quad\left|\omega_{n}\right| \leq 1-\left|\omega_{1}\right|^{2} \quad \text { for } \quad n \in \mathbb{N} \backslash\{1\} .
$$

Theorem 2.3. Let $f \in \sigma$ of the form (1.1) be in the class $\mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{3 t \Gamma(2) \Gamma(\ell+1) \sqrt{3 t \Gamma(3)}}{\sqrt{\left|9 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| & \leq \frac{27 t^{3} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}}{\left|9 t^{2} \Gamma(\ell+1) \Gamma(\ell+3)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|} \\
& +\frac{3 t \Gamma(3)(\Gamma(\ell+1))^{2}}{\Gamma(\ell+3)(1+2 \alpha+2 \mu)} \tag{2.15}
\end{align*}
$$

Proof. Let $f \in \mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$ for some $0 \leq \alpha, \mu \leq 1$, and from (2.8) and (2.9) we have

$$
\begin{equation*}
(1-\alpha+2 \mu) \frac{\mathcal{R}^{\ell} f(\xi)}{\xi}+(\alpha-2 \mu)\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime}+\mu \xi\left(\mathcal{R}^{\ell} f(\xi)\right)^{\prime \prime}=\mathcal{B}(t, \xi) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha+2 \mu) \frac{\mathcal{R}^{\ell} g(w)}{w}+(\alpha-2 \mu)\left(\mathcal{R}^{\ell} g(w)\right)^{\prime}+\mu w\left(\mathcal{R}^{\ell} g(w)\right)^{\prime \prime}=\mathcal{B}(t, w) \tag{2.17}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$ and $u, v \in \Omega$ are given to be of the form

$$
u(\xi)=\sum_{n=1}^{\infty} c_{n} \xi^{n} \quad \text { and } \quad v(w)=\sum_{n=1}^{\infty} d_{n} w^{n}
$$

From Lemma 2.2, we have

$$
\begin{equation*}
\left|c_{n}\right| \leq 1 \text { and }\left|d_{n}\right| \leq 1, n \in \mathbb{N} \tag{2.18}
\end{equation*}
$$

Upon substituting the definition of $\mathcal{B}(t, \xi)$ from (1.7) into the right-hand sides of equations (2.16) and (2.17), we obtain

$$
\begin{align*}
\mathcal{B}(t, u(\xi))= & 1+C_{1}(t) c_{1} \xi+\left[C_{1}(t) c_{2}+C_{2}(t) c_{1}^{2}\right] \xi^{2} \\
& +\left[C_{1}(t) c_{3}+2 C_{2}(t) c_{1} c_{2}+C_{3}(t) c_{1}^{3}\right] \xi^{3}+\cdots, \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{B}(t, v(w))= & 1+C_{1}(t) d_{1} w+\left[C_{1}(t) d_{2}+C_{2}(t) d_{1}^{2}\right] w^{2} \tag{2.20}\\
& +\left[C_{1}(t) d_{3}+2 C_{2}(t) d_{1} d_{2}+C_{3}(t) d_{1}^{3}\right] w^{3}+\cdots .
\end{align*}
$$

Therefore, equations (2.16) and (2.17) become

$$
\begin{align*}
& 1+\frac{\Gamma(\ell+2)}{\Gamma(2) \Gamma(\ell+1)}(1+\alpha) a_{2} \xi+\frac{\Gamma(\ell+3)}{\Gamma(3) \Gamma(\ell+1)}(1+2 \alpha+2 \mu) a_{3} \xi^{2} \\
& +\frac{\Gamma(\ell+4)}{\Gamma(4) \Gamma(\ell+1)}(1+3 \alpha+6 \mu) a_{4} \xi^{3}+\cdots \\
& =1+C_{1}(t) c_{1} \xi+\left[C_{1}(t) c_{2}+C_{2}(t) c_{1}^{2}\right] \xi^{2}+\left[C_{1}(t) c_{3}+2 C_{2}(t) c_{1} c_{2}+C_{3}(t) c_{1}^{3}\right] \xi^{3}+\cdots, \tag{2.21}
\end{align*}
$$

and

$$
\begin{align*}
& 1-\frac{\Gamma(\ell+2)}{\Gamma(2) \Gamma(\ell+1)}(1+\alpha) a_{2} w+\frac{\Gamma(\ell+3)}{\Gamma(3) \Gamma(\ell+1)}\left[2(1+2 \alpha+2 \mu) a_{2}^{2}-(1+2 \alpha+2 \mu) a_{3}\right] w^{2} \\
& +\frac{\Gamma(\ell+4)}{\Gamma(4) \Gamma(\ell+1)}\left[(20(2 \mu-\alpha)-5(2 \mu-\alpha+1)-60 \mu) a_{2}^{3}\right. \\
& \left.+(-20(2 \mu-\alpha)+5(2 \mu-\alpha+1)+60 \mu) a_{2} a_{3}+(-6 \mu-3 \alpha-1) a_{4}\right] w^{3}+\cdots \\
& =1+C_{1}(t) d_{1} w+\left[C_{1}(t) d_{2}+C_{2}(t) d_{1}^{2}\right] w^{2}+\left[C_{1}(t) d_{3}+2 C_{2}(t) d_{1} d_{2}+C_{3}(t) d_{1}^{3}\right] w^{3}+\cdots . \tag{2.22}
\end{align*}
$$

Upon equating the coefficients in equations (2.21) and (2.22), we obtain:

$$
\begin{align*}
\frac{\Gamma(\ell+2)}{\Gamma(2) \Gamma(\ell+1)}(1+\alpha) a_{2} & =C_{1}(t) c_{1} \tag{2.23}\\
\frac{\Gamma(\ell+3)}{\Gamma(3) \Gamma(\ell+1)}(1+2 \alpha+2 \mu) a_{3} & =C_{1}(t) c_{2}+C_{2}(t) c_{1}^{2} \tag{2.24}\\
-\frac{\Gamma(\ell+2)}{\Gamma(2) \Gamma(\ell+1)}(1+\alpha) a_{2} & =C_{1}(t) d_{1} \tag{2.25}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\Gamma(\ell+3)}{\Gamma(3) \Gamma(\ell+1)}\left[2(1+2 \alpha+2 \mu) a_{2}^{2}-(1+2 \alpha+2 \mu) a_{3}\right]=C_{1}(t) d_{2}+C_{2}(t) d_{1}^{2} \tag{2.26}
\end{equation*}
$$

By employing equations (2.23) and (2.25), we deduce the subsequent expressions:

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1}^{2}+d_{1}^{2}=\frac{2(\Gamma(\ell+2))^{2}(1+\alpha)^{2} a_{2}^{2}}{(\Gamma(2) \Gamma(\ell+1))^{2}\left(C_{1}(t)\right)^{2}} . \tag{2.28}
\end{equation*}
$$

Moreover, employing equations (2.24), (2.26), and (2.28) yields:

$$
\begin{equation*}
a_{2}^{2}=\frac{\Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}\left(C_{1}(t)\right)^{3}\left(c_{2}+d_{2}\right)}{2\left[\Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)\left(C_{1}(t)\right)^{2}-\Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2} C_{2}(t)\right]} . \tag{2.29}
\end{equation*}
$$

By employing Lemma 2.2 and analyzing equations (2.23) and (2.27), we have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{\Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}\left|C_{1}(t)\right|^{3}}{\left|\Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)\left(C_{1}(t)\right)^{2}-\Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2} C_{2}(t)\right|} \tag{2.30}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\Gamma(2) \Gamma(\ell+1)\left|C_{1}(t)\right| \sqrt{\Gamma(3)\left|C_{1}(t)\right|}}{\sqrt{\left|\Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)\left(C_{1}(t)\right)^{2}-\Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2} C_{2}(t)\right|}} \tag{2.31}
\end{equation*}
$$

Substituting $C_{1}(t)$ and $C_{2}(t)$, as given in equations (1.5) and (1.6) respectively, into equation (2.31) yields the subsequent expression,

$$
\left|a_{2}\right| \leq \frac{3 t \Gamma(2) \Gamma(\ell+1) \sqrt{3 t \Gamma(3)}}{\sqrt{\left|9 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|}}
$$

Subtracting equation (2.26) from equation (2.24) yields:

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\Gamma(3) \Gamma(\ell+1) C_{1}(t)\left(c_{2}-d_{2}\right)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} . \tag{2.32}
\end{equation*}
$$

As a result, this leads to the subsequent inequality:

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|a_{2}\right|^{2}+\frac{\Gamma(3) \Gamma(\ell+1)\left|C_{1}(t)\right|\left|c_{2}-d_{2}\right|}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} . \tag{2.33}
\end{equation*}
$$

By applying Lemma 2.2 and employing equations (1.5) and (1.6), we derive:

$$
\begin{align*}
\left|a_{3}\right| & \leq \frac{27 t^{3} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}}{\left|9 t^{2} \Gamma(\ell+1) \Gamma(\ell+3)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|} \\
& +\frac{3 t \Gamma(3)(\Gamma(\ell+1))^{2}}{\Gamma(\ell+3)(1+2 \alpha+2 \mu)} . \tag{2.34}
\end{align*}
$$

The proof of Theorem 2.3 is now complete.

3 Fekete-Szegö Functional Estimations of the Class $\mathcal{H}_{\sigma}(\boldsymbol{\alpha}, \mu, \mathcal{B}(t, \boldsymbol{\xi}))$

In this section, utilizing the values of a_{2}^{2} and a_{3} aids in deriving the FeketeSzegö inequality applicable to functions within the domain of $\mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$.

Theorem 3.1. Let $f \in \sigma$ given by the form (1.1) be in the class $\mathcal{H}_{\Sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$. Then

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{3 t \Gamma(3) \Gamma(\ell+1)}{\Gamma(\ell+3)(1+2 \alpha+2 \mu)} & \text { if } \quad 0 \leq|h(\eta)| \leq \frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} \\ 6 t|h(\eta)| & \text { if } \quad|h(\eta)| \geq \frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)},\end{cases}
$$

Bounds on Coefficients for a Subclass of Bi-Univalent Functions...
where
$h(\eta)=\frac{9 t^{2} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}(1-\eta)}{2\left[9 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right]}$.

Proof. Equations (2.29) and (2.32) yield

$$
\begin{aligned}
a_{3}-\eta a_{2}^{2} & =a_{2}^{2}+\frac{\Gamma(3) \Gamma(\ell+1) C_{1}(t)\left(c_{2}-d_{2}\right)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)}-\eta a_{2}^{2} \\
& =(1-\eta) a_{2}^{2}+\frac{\Gamma(3) \Gamma(\ell+1) C_{1}(t)\left(c_{2}-d_{2}\right)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} \\
& =(1-\eta) \frac{\Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}\left(C_{1}(t)\right)^{3}\left(c_{2}+d_{2}\right)}{2\left[\Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)\left(C_{1}(t)\right)^{2}-\Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2} C_{2}(t)\right]} \\
& +\frac{\Gamma(3) \Gamma(\ell+1) C_{1}(t)\left(c_{2}-d_{2}\right)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} \\
& =\left(C_{1}(t)\right)\left(\left[h(\eta)+\frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)}\right] c_{2}+\left[h(\eta)-\frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)}\right] d_{2}\right)
\end{aligned}
$$

where

$$
h(\eta)=\frac{\Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}\left(C_{1}(t)\right)^{2}(1-\eta)}{2\left[\Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha+2 \mu)\left(C_{1}(t)\right)^{2}-\Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2} C_{2}(t)\right]}
$$

By considering equations (1.5) and (1.6), and applying equation (2.18), we can conclude that

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{3 t \Gamma(3) \Gamma(\ell+1)}{\Gamma(\ell+3)(1+2 \alpha+2 \mu)} & \text { if } \quad 0 \leq|h(\eta)| \leq \frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)} \\ 6 t|h(\eta)| & \text { if } \quad|h(\eta)| \geq \frac{\Gamma(3)(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha+2 \mu)}\end{cases}
$$

The proof of Theorem 3.1 is now complete.

Corollary 3.2. Let $f \in \sigma$ given by the form (1.1) be in the class $\mathcal{H}_{\sigma}(\alpha, 0, \mathcal{B}(t, \xi))$

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{3 t \Gamma(2) \Gamma(\ell+1) \sqrt{3 t \Gamma(3)}}{\sqrt{\left|9 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|}}, \\
\left|a_{3}\right| \leq \frac{27 t^{3} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}}{\left|9 t^{2} \Gamma(\ell+1) \Gamma(\ell+3)(\Gamma(2))^{2}(1+2 \alpha)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right|} \\
\\
+\frac{3 t \Gamma(3)(\Gamma(\ell+1))^{2}}{\Gamma(\ell+3)(1+2 \alpha)},
\end{gathered}
$$

and

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{3 \Gamma \Gamma(3) \Gamma(\ell+1)}{\Gamma(\ell+3)(1+2 \alpha)} & \text { if } \quad 0 \leq\left|h_{1}(\eta)\right| \leq \frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha)} \\ 6 t\left|h_{1}(\eta)\right| & \text { if } \quad\left|h_{1}(\eta)\right| \geq \frac{\Gamma(3) \Gamma(\ell+1)}{2 \Gamma(\ell+3)(1+2 \alpha)}\end{cases}
$$

where

$$
h_{1}(\eta)=\frac{9 t^{2} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}(1-\eta)}{2\left[9 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}(1+2 \alpha)-\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}(1+\alpha)^{2}\right]} .
$$

Corollary 3.3. Let $f \in \sigma$ given by the form (1.1) be in the class, $\mathcal{H}_{\sigma}(1,0, \mathcal{B}(t, \xi))$. Then

$$
\begin{aligned}
& \quad\left|a_{2}\right| \leq \frac{3 t \Gamma(2) \Gamma(\ell+1) \sqrt{3 t \Gamma(3)}}{\sqrt{\left|27 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}-4\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}\right|}}, \\
& \left|a_{3}\right| \leq \frac{27 t^{3} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}}{\left|27 t^{2} \Gamma(\ell+1) \Gamma(\ell+3)(\Gamma(2))^{2}-4\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}\right|}+\frac{t \Gamma(3)(\Gamma(\ell+1))^{2}}{\Gamma(\ell+3)}, \\
& \quad \text { and }
\end{aligned}
$$

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{t \Gamma(3) \Gamma(\ell+1)}{\Gamma(\ell+3)} & \text { if } \quad 0 \leq\left|h_{2}(\eta)\right| \leq \frac{\Gamma(3) \Gamma(\ell+1)}{6 \Gamma(\ell+3)} \\ 6 t\left|h_{2}(\eta)\right| & \text { if } \quad\left|h_{2}(\eta)\right| \geq \frac{\Gamma(3) \Gamma(\ell+1)}{6 \Gamma(\ell+3)},\end{cases}
$$

where

$$
h_{2}(\eta)=\frac{9 t^{2} \Gamma(3)(\Gamma(2) \Gamma(\ell+1))^{2}(1-\eta)}{2\left[27 t^{2} \Gamma(\ell+3) \Gamma(\ell+1)(\Gamma(2))^{2}-4\left(18 t^{2}-1\right) \Gamma(3)(\Gamma(\ell+2))^{2}\right]} .
$$

4 Conclusions

In this paper, we have introduced and explored a new subclass of analytic bi-univalent functions denoted as $\mathcal{H}_{\sigma}(\alpha, \mu, \mathcal{B}(t, \xi))$, which are linked to LucasBalancing Polynomials and the Ruscheweyh derivative operator. Our investigation focuses on initial estimates of Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Moreover, using a_{2}^{2} and a_{3}, we establish Fekete-Szegö inequalities for functions in this subclass. Moreover, By specializing parameters, we established connections between subclass, Lucas-Balancing Polynomials and Ruscheweyh derivative operator, deriving estimates for Taylor-Maclaurin coefficients and exploring Fekete-Szegö inequalities.

References

[1] S.S. Miller, P.T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000.
[2] P.L. Duren, Grundlehren der Mathematischen Wissenchaffen, Univalent Functions; Springer, New York, Berlin/Heidelberg, 1983.
[3] A. Hussen, M. Illafe, Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials, Mathematics, 11, no. 24, (2023), 4941.
[4] A. Hussen, A. Zeyani, Coefficients and Fekete-Szegö Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials, Mathematics, 11, no. 13, (2023), 2852.
[5] F. Yousef, S. Alroud, M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletín de la Sociedad Matemática Mexicana, 26, (2020), 329-339.
[6] M. Illafe, A. Amourah, M. Haji Mohd, Coefficient estimates and FeketeSzegö functional inequalities for a certain subclass of analytic and biunivalent functions, Axioms, 11, no. 4 (2022), 147.
[7] M. Illafe, F. Yousef, M. Haji Mohd, S. Supramaniam, Initial Coefficients Estimates and Fekete-Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination, Axioms, 12, no. 3 (2023), 235.
[8] F. Yousef, B.A. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32, (2018), 3229-3236.
[9] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and biunivalent functions endowed with coefficient estimate problems, Analysis and Mathematical Physics, 11, (2021), 1-12.
[10] F. Yousef, A. Amourah, B.A. Frasin, T. Bulboacă, An avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms, 11, no. 6 (2022), 267.
[11] İ. Aktaş, and İ. Karaman, On some new subclasses of bi-univalent functions defined by Balancing polynomials, Karamanoglu Mehmetbey Universitesi Muhendislik ve Doga Bilimleri Dergisi, 5, no. 1, (2023), 25-32.
[12] A. Amourah, B.A. Frasin, M. Ahmad, F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions, Symmetry, 14, no. 1, (2022), 147.
[13] P.O. Sabir, Some remarks for subclasses of bi-univalent functions defined by Ruscheweyh derivative operator, Filomat, 38, no. 4, (2024), 12551264.
[14] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, 49, no. 1, (1975), 109-115.
[15] A. Behera, G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly, 37, (1999), 98-105.
[16] R.K. Davala, G.K. Panda, On sum and ratio formulas for balancing numbers, Journal of the Ind. Math. Soc., 82, nos. 1-2, (2015), 23-32.
[17] Robert Frontczak, A note on hybrid convolutions involving balancing and Lucas-balancing numbers, Appl. Math. Sci., 12, no. 25, (2018), 2001-2008.
[18] R. Frontczak, Sums of balancing and Lucas-balancing numbers with binomial coefficients, Int. J. Math. Anal., 12, no. 12, (2018), 585-594.
[19] T. Komatsu, G. K. Panda, On several kinds of sums of balancing numbers, arXiv preprint arXiv:1608.05918, (2016).
[20] Gopal Krishna Panda, Takao Komatsu, Ravi Kumar Davala, Reciprocal sums of sequences involving balancing and Lucas-balancing numbers, Math. Rep., 20, no. 70, (2018), 201-214.
[21] B.K. Patel, N. Irmak, P.K. Ray, Incomplete balancing and Lucasbalancing numbers, Math. Rep., 20, no. 70, (2018), 59-72.
[22] P.K. Ray, J. Sahu, Generating functions for certain balancing and Lucasbalancing numbers, Palestine Journal of Mathematics, 5, no. 2, (2016), 122-129.
[23] P.K. Ray, Balancing and Lucas-balancing sums by matrix methods, Mathematical Reports, 17, no. 2, (2015), 225-233.
[24] A. Berczes, K. Liptai, I. Pink, On generalized balancing sequences, Fibonacci Quart., 48, no. 2, (2010), 121-128.
[25] R. Frontczak, On balancing polynomials, Appl. Math. Sci., 13, no. 2, (2019), 57-66.

