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Abstract

In this paper, we introduce and geometrically investigate a new
subclass B∗

m,δ(λ, µ;α) of analytic functions defined by a generalized
multiplier transformation operator. Moreover, our investigation in-
cludes coefficient estimates, growth and distortion theorems, and clo-
sure theorems relevant to these functions. Furthermore, we establish
conditions under which functions in this subclass exhibit properties
such as convexity, close-to-convexity, and starlikeness.
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1 Introduction

Let A represent the class of analytic functions in the open unit disk U =
{z ∈ C : |z| < 1} expressed as

f(z) = z +

∞
∑

n=2

anz
n. (1.1)

Consider the subclass A∗ of functions in A that are of the form

f(z) = z −

∞
∑

n=2

anz
n, an ≥ 0. (1.2)

For f ∈ A, Cho and Srivastava [1] introduced the following generalized
multiplier transformation operator

Imδ f(z) = z +

∞
∑

n=2

(

n + δ

1 + δ

)m

anz
n, (m ∈ N0 = N ∪ {0} and δ ≥ 0). (1.3)

Note that, for δ = 1, the multiplier transformation Imδ was introduced
and studied by Uralegaddi and Somanatha [2] and for δ = 0, the multiplier
transformation Imδ was introduced and studied by Salagean [3].

Yousef et al. [4, 5] introduced the following general class Bη
Σ(λ, µ;α) of

analytic and bi-univalent functions:

Definition 1.1. For λ ≥ 1, η ≥ 0, µ ≥ 0 and 0 ≤ α < 1, a functionf ∈ A
given by (1.1) is said to be in the class Bη

Σ(λ, µ;α) if the following conditions
hold for all z ∈ U:

Re

(

(1− λ)

(

f(z)

z

)η

+ λf ′(z)

(

f(z)

z

)η−1

+ ξµzf ′′(z)

)

> α, (1.4)

where ξ = 2λ+η

2λ+1
.

Several researchers have explored the class Bη
Σ(λ, µ;α) and utilized it in

various contexts. For example, we refer the reader to [6, 7, 8, 9, 10, 11, 12,
13, 14, 16].

When Imδ f(z) is incorporated into Definition 1.1 and letting η = 1, we
introduce here a class Bm,δ(λ, µ;α) defined as follows:
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Definition 1.2. For λ ≥ 1, µ ≥ 0 and 0 ≤ α < 1, a functionf ∈ A given by
(1.1) is said to be in the class Bm,δ(λ, µ;α) if the following conditions hold
for all z ∈ U:

Re

{

(1− λ)
Imδ f(z)

z
+ λ(Imδ f(z))′ + µz(Imδ f(z))′′

}

> α. (1.5)

Moreover, let B∗

m,δ(λ, µ;α) = Bm,δ(λ, µ;α) ∩A∗.
Inspired by the work of Amourah and Yousef [15], we investigate similar

geometric properties for functions in the class B∗

m,δ(λ, µ;α).

2 Coefficient estimates

This section commences with deriving a necessary and sufficient condition
for a function f(z) to belong to the class B∗

m,δ(λ, µ;α).

Theorem 2.1. A function f ∈ A∗ defined by (1.2) belongs to the class
B∗

m,δ(λ, µ;α) if and only if

∞
∑

n=2

[(1− λ) + nλ+ n(n− 1)µ]

(

n+ δ

1 + δ

)m

an ≤ 1− α. (2.1)

Proof. Let the function f(z) defined by (1.2) be in the class B∗

m,δ(λ, µ;α) and
z ∈ U. Then by definition

Re

{

(1− λ)
Imδ f(z)

z
+ λ(Imδ f(z))′ + µz(Imδ f(z))′′

}

= Re

{

1−
∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n + δ

1 + δ

)m

anz
n−1

}

> α.

As z approaches 1− along the real axis, inequality (2.1) follows.
Conversely, if the inequality (2.1) holds, then for z ∈ U, we have

∣

∣

∣

∣

(1− λ)
Imδ f(z)

z
+ λ (Imδ f(z))′ + µz (Imδ f(z))′′ − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n + δ

1 + δ

)m

anz
n−1

∣

∣

∣

∣

∣

≤
∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n + δ

1 + δ

)m

an|z|
n−1

≤
∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n + δ

1 + δ

)m

an ≤ 1− α.
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This yields f ∈ B∗

m,δ(λ, µ;α).

Corollary 2.2. Let f(z) defined by (1.2) be in the class B∗

m,δ(λ, µ;α). Then

an ≤
1− α

[(1− λ) + nλ+ n(n− 1)µ]
(

n+δ
1+δ

)m , n ≥ 2. (2.2)

The equality in (2.2) holds for the function

f(z) = z −
1− α

[(1− λ) + nλ+ n(n− 1)µ]
(

n+δ
1+δ

)m zn.

3 Growth and distortion theorems

In this section, we establish the growth and distortion theorems for any
function f(z) belonging to the class B∗

m,δ(λ, µ;α).

Theorem 3.1. Let the function f(z) defined by (1.2) be in the class B∗

m,δ(λ, µ;α).
Then, for |z| = r < 1, we have

r −
1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r2 ≤ |f(z)| ≤ r +
1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r2. (3.1)

The equality in (3.1) holds for the function

f(z) = z −
1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m z2.

Proof. If the function f(z) ∈ B∗

m,δ(λ, µ;α) defined by (1.2), then for |z| =
r < 1, we have |f(z)| ≤ |z|+

∑

∞

n=2 an|z|
n ≤ r + r2

∑

∞

n=2 an.

By making use of Theorem 2.1, we get

|f(z)| ≤ r +
1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r2.

Similarly,

|f(z)| ≥ |z| −
∞
∑

n=2

an|z|
n−1 ≥ r −

1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r2.

Thus (3.1) holds which completes the proof of Theorem 3.1.
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Theorem 3.2. Let the function f(z) defined by (1.2) be in the class B∗

m,δ(λ, µ;α).
Then, for |z| = r < 1, we have

1−
2(1− α)

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r ≤ |f ′(z)| ≤ 1 +
2(1− α)

(1 + λ+ 2µ)
(

2+δ
1+δ

)m r. (3.2)

The equality in (3.2) holds for the function

f(z) = z −
1− α

(1 + λ+ 2µ)
(

2+δ
1+δ

)m z2.

Proof. Apply a similar argument to the proof of Theorem 3.1 when taking
the derivative of the function f .

4 Closure theorems

Theorem 4.1. Let fj(z) = z−
∞
∑

n=2

anjz
n, anj ≥ 0 and z ∈ U, be in the class

B∗

m,δ(λ, µ;α) for j = 1, 2, ..., J . Then the function F (z) = z−
∞
∑

n=2

bnz
n is also

in B∗

m,δ(λ, µ;α), where bn = 1
J

∑I
j=1 anj , (n ≥ 2).

Proof. Let fj(z) be in B∗

m,δ(λ, µ;α). Then

∞
∑

n=2

[(1− λ) + nλ+ n(n− 1)µ]

(

n+ δ

1 + δ

)m

bn

=
∞
∑

n=2

[(1− λ) + nλ+ n(n− 1)µ]

(

n+ δ

1 + δ

)m
(

1

J

J
∑

j=1

anj

)

=
1

J

J
∑

j=1

(

∞
∑

n=2

[(1− λ) + nλ+ n(n− 1)µ]

(

n+ δ

1 + δ

)m

anj

)

≤
1

J

J
∑

j=1

(1− α) = 1− α,

where in the last inequality we have used Theorem 2.1.
This yields F ∈ B∗

m,δ(λ, µ;α).
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Theorem 4.2. The class B∗

m,δ(λ, µ;α) is a convex set.

Proof. Let fj(z) = z −
∞
∑

n=2

anjz
n be in the class B∗

m,δ(λ, µ;α) for j = 1, 2.

We need to show that

G(z) = ωf1(z) + (1− ω)f2(z)

= z −

∞
∑

n=2

[ωan1 + (1− ω)an2] z
n, (0 ≤ ω ≤ 1)

is also in the class B∗

m,δ(λ, µ;α).
Now, for 0 ≤ ω ≤ 1,

∞
∑

n=2

[(1− λ) + nλ+ n(n− 1)µ]

(

n+ δ

1 + δ

)m

[ωan1 + (1− ω)an2]

= ω

∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n+ δ

1 + δ

)m

an1

+ (1− ω)

∞
∑

n=2

[(1− λ) + nλ + n(n− 1)µ]

(

n + δ

1 + δ

)m

an2

≤ ω(1− α) + (1− ω)(1− α) = 1− α.

Hence G(z) ∈ B∗

m,δ(λ, µ;α) which completes the proof of Theorem 4.2.

In the next section, we shed light on the radii of close-to-convexity, star-
likeness, and convexity for a function in the class B∗

m,δ(λ, µ;α).

5 Radii of close-to-convexity, starlikeness, and

convexity

Significant and extensively studied subclasses of the analytic function class
A include the class C(β) of close-to-convex functions of order β in U, the
class S∗(β) of starlike functions of order β in U, and the class K(α) of convex
functions of order β in U. For all z ∈ U and some 0 ≤ β < 1, by definition,
we have

C(β) := {f ∈ A : Re {f ′(z)} > β} , (5.1)

S∗(β) :=

{

f ∈ A : Re

{

zf ′(z)

f(z)

}

> β

}

, (5.2)
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and

K(β) :=

{

f ∈ A : Re

{

1 +
zf ′′(z)

f ′(z)

}

> β

}

. (5.3)

Next, we shall determine the radii of close-to-convexity, starlikeness, and
convexity for functions f ∈ B∗

m,δ(λ, µ;α).

Theorem 5.1. If f ∈ B∗

m,δ(λ, µ;α), then f ∈ C(β) in {z : |z| < r1}, where

r1 = inf
n

{

(1− β)[(1− λ) + nλ+ n(n− 1)µ]
(

n+δ
1+δ

)m

n(1− α)

}
1

n−1

, n ≥ 2.

Proof. Let f ∈ B∗

m,δ(λ, µ;α).

|f ′(z)− 1| =

∣

∣

∣

∣

∣

∞
∑

n=2

nanz
n−1

∣

∣

∣

∣

∣

≤

∞
∑

n=2

ann|z|
n−1.

Now, by using Theorem 2.1, |f ′(z)− 1| 6 1− β, if

n|z|n−1 ≤
(1− β)[(1− λ) + nλ+ n(n− 1)µ]

(

n+δ
1+δ

)m

(1− α)

or

|z| ≤ inf
n

{

(1− β)[(1− λ) + nλ + n(n− 1)µ]
(

n+δ
1+δ

)m

n(1− α)

}
1

n−1

, n ≥ 2.

This completes the proof of Theorem 5.1.

Theorem 5.2. If f ∈ B∗

m,δ(λ, µ;α), then f ∈ S∗(β) in {z : |z| < r2}, where

r2 = inf
n

{

(1− β)[(1− λ) + nλ+ n(n− 1)µ]
(

n+δ
1+δ

)m

(n− β)(1− α)

}
1

n−1

, n ≥ 2.

Proof. Let f ∈ B∗

m,δ(λ, µ;α).
∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

∞

n=2(n− 1)anz
n−1

1−
∑

∞

n=2 anz
n−1

∣

∣

∣

∣

≤

∑

∞

n=2(n− 1)an|z|
n−1

1−
∑

∞

n=2 an|z|
n−1

.

Now, by using Theorem 2.1,
∣

∣

∣

zf ′(z)
f(z)

− 1
∣

∣

∣
≤ 1− β, if

(n− β)|z|n−1 ≤
(1− β)[(1− λ) + nλ+ n(n− 1)µ]

(

n+δ
1+δ

)m

(1− α)
,
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or

|z| ≤ inf
n

{

(1− β)[(1− λ) + nλ+ n(n− 1)µ]
(

n+δ
1+δ

)m

(n− β)(1− α)

}
1

n−1

, n ≥ 2.

This completes the proof of Theorem 5.2.

From definitions (5.2) and (5.3), it is easy to see that

f(z) ∈ K(α) iff zf ′(z) ∈ S∗(α).

Corollary 5.3. If f ∈ B∗

m,δ(λ, µ;α), then f ∈ K(β) in {z : |z| < r3}, where

r3 = inf
n

{

(1− β)[(1− λ) + nλ + n(n− 1)µ]
(

n+δ
1+δ

)m

n(n− β)(1− α)

}
1

n−1

, n ≥ 2.
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Fekete–Szegö functional inequalities for a certain subclass of analytic and
bi-univalent functions, Axioms, 11, no. 4, (2022), 147.

[8] A. Amourah, B. A. Frasin, M. Ahmad, F. Yousef, Exploiting the Pascal
distribution series and Gegenbauer polynomials to construct and study
a new subclass of analytic bi-univalent functions, Symmetry, 14, no. 1,
(2022), 147.

[9] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboacă, An avant-garde con-
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