Evaluation of certain integrals in the Book of Gradshteyn and Ryzhik

Juan Carlos López Carreño ${ }^{1}$, Rosalba Mendoza Suárez ${ }^{1}$, Jairo Alonso Mendoza Suárez ${ }^{2}$
${ }^{1}$ Department of Mathematics
Faculty of Basic Sciences
University of Pamplona
Pamplona, Colombia
${ }^{2}$ Department of Physics
Faculty of Basic Sciences
University of Pamplona
Pamplona, Colombia
email: jairoam@unipamplona.edu.co

(Received April 23, 2024, Accepted May 23, 2024,
Published June 1, 2024)

Abstract

In this paper, we address some improper integrals from the book by Gradshteyn and Ryzhik [4]. Our approach focuses on obtaining exact solutions involving only sums, avoiding the calculation of tedious derivatives as those appearing in the mentioned text.

1 Introduction.

The tables of series and integrals have been used over time. Among these, we mention [1], [2], [3]. After a search, we found that the table of integrals by Gradshteyn and Ryzhik [4] is the most popular among users of the scientific

Key words and phrases: Improper integrals, recurrence relation.
AMS (MOS) Subject Classifications: 11J83, 11K50, 11L03, 37E10,
60F05.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
community.
On page 325, section 3.252, of [4], the following integral appears:

$$
\begin{align*}
& \int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n}}=\frac{(-1)^{n-1}}{(n-1)!} \frac{\partial^{n-1}}{\partial c^{n-1}}\left[\frac{1}{\sqrt{a c-b^{2}}} \operatorname{arccot} \frac{b}{\sqrt{a c-b^{2}}}\right], \tag{1.1}\\
& {\left[a>0, \quad a c>b^{2}\right] .}
\end{align*}
$$

If one needs to compute an integral like the one presented on the left-hand side of (1.1), for large values of n, applying formula (1.1) becomes cumbersome, as it involves calculating higher-order derivatives with respect to the variable c of a product where the arccotangent function appears. Therefore, it is necessary to find a solution that is more practical and explicit, one that does not involve the calculation of derivatives, as the one shown in Proposition 1. Additionally, in this work, we obtain similar formulas for the cases $a c<b^{2}$ and $a c=b^{2}$, which are not covered in [4].
Another integral found in section 3.252 page 325 is:

$$
\begin{align*}
\int_{0}^{\infty} & \frac{x d x}{\left(a x^{2}+2 b x+c\right)^{n}} \\
& =\frac{(-1)^{n}}{(n-1)!} \frac{\partial^{n-2}}{\partial c^{n-2}}\left\{\frac{1}{2\left(a c-b^{2}\right)}-\frac{b}{2\left(a c-b^{2}\right)^{\frac{3}{2}}} \operatorname{arccot} \frac{b}{\sqrt{a c-b^{2}}}\right\} \text { for } a c>b^{2} \\
& =\frac{(-1)^{n}}{(n-1)!} \frac{\partial^{n-2}}{\partial c^{n-2}}\left\{\frac{1}{2\left(a c-b^{2}\right)}+\frac{b}{4\left(b^{2}-a c\right)^{\frac{3}{2}}} \ln \frac{b+\sqrt{b^{2}-a c}}{b-\sqrt{b^{2}-a c}}\right\} \text { for } b^{2}>a c>0 \\
& =\frac{a^{n-2}}{2(n-1)(2 n-1) b^{2 n-2}} \text { for } a c=b^{2} . \tag{1.2}
\end{align*}
$$

In this second integral, all three possible cases are considered, but it is evident that for the cases $a c>b^{2}$ and $b^{2}>a c>0$, the solution to the integral is not practical, especially when dealing with large values of n, as it involves calculating very high-order derivatives.
Finally, the following integral is presented in section 3.252 page 325:

$$
\begin{align*}
& \int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+\frac{3}{2}}}=\frac{(-2)^{n}}{(2 n+1)!!} \frac{\partial^{n}}{\partial c^{n}}\left\{\frac{1}{\sqrt{c}(\sqrt{a c}+b)}\right\} \tag{1.3}\\
& \quad[a \geq 0, \quad c>0, \quad b>-\sqrt{a c}]
\end{align*}
$$

Taking the above into account, the aim of this study is to express each of the previous integrals by means of explicit formulas involving only sums, as shown in propositions 2.1, 2.2, 2.3, the central part of this work.

2 A reduction formula

In this section, we mention a well-known recurrence formula and we present a deduction of it here in order to maintain the self-contained nature of this article.
For $n \geq 1$ and $a>0$ a real number, let J_{n} be the indefinite integral.

$$
\begin{equation*}
J_{n}=\int \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n}}, \tag{2.4}
\end{equation*}
$$

completing the square, $a x^{2}+2 b x+c=a\left(y^{2}+\alpha^{2}\right)$, can be written as

$$
\begin{equation*}
y=x+\frac{b}{a}, \quad \alpha^{2}=\frac{a c-b^{2}}{a^{2}} \tag{2.5}
\end{equation*}
$$

taking into account this change of variable in the integral given in (2.4), we have

$$
\begin{equation*}
a^{n} J_{n}=\int \frac{d y}{\left(y^{2}+\alpha^{2}\right)^{n}}, \tag{2.6}
\end{equation*}
$$

as

$$
\begin{equation*}
\int \frac{d y}{\left(y^{2}+\alpha^{2}\right)^{n}}=\int \frac{y^{2}+\alpha^{2}}{\left(y^{2}+\alpha^{2}\right)^{n+1}} d y=\alpha^{2} \int \frac{d y}{\left(y^{2}+\alpha^{2}\right)^{n+1}}+\int \frac{y^{2} d y}{\left(y^{2}+\alpha^{2}\right)^{n+1}} \tag{2.7}
\end{equation*}
$$

then equality (2.6) can be written as

$$
\begin{equation*}
a^{n} J_{n}=\alpha^{2} a^{n+1} J_{n+1}+\int \frac{y^{2} d y}{\left(y^{2}+\alpha^{2}\right)^{n+1}} \tag{2.8}
\end{equation*}
$$

the last integral on the right-hand side of (2.8) is evaluated using the method of integration by parts.
If

$$
u=y, \quad d v=\frac{y d y}{\left(y^{2}+\alpha^{2}\right)^{n+1}}
$$

so,

$$
d u=d y, \quad v=\frac{-1}{2 n} \frac{1}{\left(y^{2}+\alpha^{2}\right)^{n}},
$$

thus, we have:

$$
\begin{equation*}
\int \frac{y^{2} d y}{\left(y^{2}+\alpha^{2}\right)^{n+1}}=\frac{-y}{2 n\left(y^{2}+\alpha^{2}\right)^{n}}+\frac{1}{2 n} \int \frac{d y}{\left(y^{2}+\alpha^{2}\right)^{n}} \tag{2.9}
\end{equation*}
$$

taking into account (2.6), (2.8), and (2.9), we obtain

$$
\begin{equation*}
a^{n} J_{n}=\alpha^{2} a^{n+1} J_{n+1}-\frac{y}{2 n\left(y^{2}+\alpha^{2}\right)^{n}}+\frac{1}{2 n} a^{n} J_{n} \tag{2.10}
\end{equation*}
$$

if we consider $\alpha \neq 0$, from equality (2.10), we isolate J_{n+1},

$$
J_{n+1}=\frac{2 n-1}{2 n} \cdot \frac{1}{a} \cdot \frac{1}{\alpha^{2}} J_{n}+\frac{y}{2 n \alpha^{2} a^{n+1}} \cdot \frac{1}{\left(y^{2}+\alpha^{2}\right)^{n}}
$$

Taking into account the expressions for y and α given in (2.5), J_{n+1} can be written as

$$
\begin{equation*}
J_{n+1}=\frac{(2 n-1) a}{2 n\left(a c-b^{2}\right)} J_{n}+\frac{a x+b}{2 n\left(a c-b^{2}\right)} \cdot \frac{1}{\left(a x^{2}+2 b x+c\right)^{n}} . \tag{2.11}
\end{equation*}
$$

If we consider the sequences $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ whose general terms are given by:

$$
c_{n}=\frac{(2 n-1) a}{2 n\left(a c-b^{2}\right)}, \quad d_{n}=\frac{a x+b}{2 n\left(a c-b^{2}\right)} \cdot \frac{1}{\left(a x^{2}+2 b x+c\right)^{n}},
$$

and considering the formula (see [5]), finally from (2.11), we obtain

$$
\begin{equation*}
J_{n+1}=\frac{1}{4 n}\binom{2 n}{n} \frac{a^{n}}{\left(a c-b^{2}\right)^{n}}\left[J_{1}+\sum_{k=1}^{n} \frac{2^{2 k-1}\left(a c-b^{2}\right)^{k-1}}{a^{k} k\binom{2 k}{k}} \cdot \frac{a x+b}{\left(a x^{2}+2 b x+c\right)^{k}}\right] \tag{2.12}
\end{equation*}
$$

where

$$
J_{1}=\left\{\begin{array}{l}
\frac{1}{\sqrt{a c-b^{2}}} \arctan \left(\frac{a x+b}{\sqrt{a c-b^{2}}}\right), \text { if } a c-b^{2}>0 \\
\frac{1}{2 \sqrt{b^{2}-a c}} \log \left[\frac{a x+b-\sqrt{b^{2}-a c}}{a x+b+\sqrt{b^{2}-a c}}\right], \text { if } a c-b^{2}<0 .
\end{array}\right.
$$

Remark. When $\alpha=0$; that is, if $a c-b^{2}=0$, from equality (2.10), we obtain an explicit expression for J_{n} :

$$
\begin{equation*}
J_{n}=-\frac{a^{n-1}}{2 n-1} \cdot \frac{1}{(a x+b)^{2 n-1}}, \quad \text { if } a c=b^{2} \tag{2.13}
\end{equation*}
$$

2.1 A look at the integral(1.1)

As our interest is focused on the study of certain improper integrals mentioned in the introduction, let us consider, for $n \in \mathbb{N}$, the improper integral I_{n+1}, given by:

$$
\begin{equation*}
I_{n+1}=\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+1}} \tag{2.14}
\end{equation*}
$$

thus, from (2.12), (2.13), we are able to establish the following result:

Proposition 2.1.

$$
\begin{equation*}
I_{n+1}=\frac{1}{4^{n}}\binom{2 n}{n} \frac{a^{n}}{\left(a c-b^{2}\right)^{n}}\left[I_{1}-\frac{b}{2\left(a c-b^{2}\right)} \sum_{k=1}^{n}\left(\frac{4 a c-4 b^{2}}{a c}\right)^{k} \frac{(k-1)!k!}{(2 k)!}\right], \tag{2.15}
\end{equation*}
$$

where

$$
I_{1}=\left\{\begin{array}{l}
\frac{1}{\sqrt{a c-b^{2}}}\left[\frac{\pi}{2}-\arctan \left(\frac{b}{\sqrt{a c-b^{2}}}\right)\right], \text { if } a c-b^{2}>0 \tag{2.16}\\
\frac{1}{\sqrt{b^{2}-a c}} \log \left[\frac{b+\sqrt{b^{2}-a c}}{\sqrt{a c}}\right], \text { if } a c-b^{2}<0
\end{array}\right.
$$

finally, from (2.13), it follows that:

$$
I_{n+1}=\frac{a^{n}}{(2 n+1) b^{2 n+1}}, \text { if } a c=b^{2}
$$

2.2 A look at the integral (1.2).

If we consider, for $n \in \mathbb{N}$, the improper integral K_{n}, given by:

$$
\begin{equation*}
K_{n+1}=\int_{0}^{\infty} \frac{x}{\left(a x^{2}+2 b x+c\right)^{n+1}} d x, \quad a>0 . \tag{2.17}
\end{equation*}
$$

Through an algebraic manipulation, K_{n+1} can be written as:

$$
K_{n+1}=\frac{1}{2 a} \int_{0}^{\infty} \frac{2 a x+2 b}{\left(a x^{2}+2 b x+c\right)^{n+1}} d x-\frac{b}{a} I_{n+1}
$$

the first integral on the right-hand side of the preceding equality is evaluated using the substitution $t=a x^{2}+2 b x+c$. Thus we record the explicit evaluation of K_{n+1} i in the following result:

Proposition 2.2. If K_{n+1} is given by (2.17), then

$$
K_{n+1}=\frac{1}{2 a n c^{n}}-\frac{b}{a} I_{n+1},
$$

where I_{n+1} is the integral in Proposition 2.1.
Finally, we obtain an explicit expression for the integral (1.3) in the introduction.

2.3 A look at the integral (1.3)

For n a natural number, let S_{n+1} be the improper integral given by:

$$
\begin{equation*}
S_{n+1}=\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+\frac{3}{2}}}, \tag{2.18}
\end{equation*}
$$

in order to obtain a recurrence relation for the sequence $\left\{S_{n+1}\right\}$, let's consider the function $Q(x)$ defined by:

$$
\begin{equation*}
Q(x)=(2 a x+2 b)\left(a x^{2}+2 b x+c\right)^{-n-1 / 2}, \tag{2.19}
\end{equation*}
$$

differentiating (2.19) with respect to x :

$$
\frac{d Q}{d x}=2 a\left(a x^{2}+2 b x+c\right)^{-n-1 / 2}-\frac{2 n+1}{2}(2 a x+2 b)^{2}\left(a x^{2}+2 b x+c\right)^{-n-3 / 2}
$$

taking into account that $(2 a x+2 b)^{2}$ can be written as:

$$
(2 a x+2 b)^{2}=4 a^{2} x^{2}+8 a b x+4 b^{2}=4 a\left(a x^{2}+2 b x+c\right)+4\left(b^{2}-a c\right),
$$

the equality (2.3) can be expressed as:

$$
\begin{equation*}
\frac{d Q}{d x}=\frac{-4 a n}{\left(a x^{2}+2 b x+c\right)^{n+1 / 2}}-\frac{2(2 n+1)\left(b^{2}-a c\right)}{\left(a x^{2}+2 b x+c\right)^{n+3 / 2}} \tag{2.20}
\end{equation*}
$$

by integrating with respect to x on both sides of (2.20) and taking into account (2.19), we obtain:
$\frac{b}{c^{n+1 / 2}}=2 a n \int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+1 / 2}}+(2 n+1)\left(b^{2}-a c\right) \int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+3 / 2}}$,
since S_{n+1} is defined by (2.18), the above equality can be written as:

$$
\begin{equation*}
S_{n+1}=\frac{b}{(2 n+1)\left(b^{2}-a c\right) c^{n+1 / 2}}-\frac{2 a n}{(2 n+1)\left(b^{2}-a c\right)} S_{n} \tag{2.21}
\end{equation*}
$$

by identifying the sequences $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ through:

$$
c_{n}=\frac{2 a n}{(2 n+1)\left(b^{2}-a c\right)} ; \quad d_{n}=\frac{b}{(2 n+1)\left(b^{2}-a c\right) c^{n+1 / 2}},
$$

applying the recurrence formula (see [5]), we obtain:

$$
\begin{equation*}
S_{n+1}=\frac{(-2 a)^{2} n!}{\left(b^{2}-a c\right)^{n}(2 n+1)!!}\left[S_{1}+\sum_{k=1}^{n} \frac{b}{\sqrt{c}} \frac{\left(b^{2}-a c\right)^{k-1}(2 k-1)!!}{(-2 a c)^{k} k!}\right] \tag{2.22}
\end{equation*}
$$

Evaluation of certain integrals...
where

$$
S_{1}=\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{3 / 2}}
$$

taking into account that

$$
\begin{equation*}
S_{1}=\left.\frac{a x+b}{\left(a c-b^{2}\right) \sqrt{a x^{2}+2 b x+c}}\right|_{0} ^{\infty}=\frac{1}{\sqrt{c}(\sqrt{a c}+b)}, \text { with } \mathrm{b}>-\sqrt{\mathrm{ac}} \tag{2.23}
\end{equation*}
$$

From the previous discussion, (2.22) and (2.23) allow us to establish the following assertion:

Proposition 2.3. For $n \in \mathbb{N}, a>0, c>0, b>-\sqrt{a c}$

$$
\begin{align*}
\int_{0}^{\infty} & \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+3 / 2}}=\left(\frac{2 a c}{a c-b^{2}}\right)^{n} \frac{n!}{c^{n+1 / 2}(\sqrt{a c}+b)(2 n+1)!!} \\
& {\left[1+\frac{b}{(b-\sqrt{a c})} \sum_{k=1}^{n}\left(\frac{a c-b^{2}}{2 a c}\right)^{k} \frac{(2 k-1)!!}{k!}\right] } \tag{2.24}
\end{align*}
$$

Again, as in the case of Propositions 2.1 and 2.2, we obtain expressions for evaluating this type of integrals in a simpler way than those appearing in Table [4].

References

[1] A. Erdelyi et al., Higher Transcendental Functions, 3 volumes, McGrawHill, New York, 1953.
[2] W. Grabner, N. Hofreiter, Integraltafel: erster Teil, Unbestimmte Integrale; zweiter Teil, Bestimmte Integrale, Springer-Verlag, Wien, 1965.
[3] A. P. Prudnikov, A. Yu.a. Brychkov, 0. I. Marichev, Integrals and Series, 5 volumes, Gordon and Breach, New York, 1986.
[4] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Seventh Edition) Editor(s): Alan Jeffrey, Daniel Zwillinger, Academic Press, New York, 2007.
[5] Yu Takeuchi, Sucesiones recurrentes; Universidad Nacional de Colombia, Bogotá, Colombia, (2005) 35-36.

