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Abstract

In this paper, we introduce the notion of almost (τ1, τ2)-continuous
multifunctions. We also investigate several characterizations of almost
(τ1, τ2)-continuous multifunctions.

1 Introduction

In 1968, M. K. Singal and A. R. Singal [11] introduced the notion of almost
continuous functions as a generalization of continuity. Popa [10] defined al-
most quasi-continuous functions as a generalization of almost continuity [11]
and quasi-continuity [7]. In 2001, Popa and Noiri [9] introduced the notion of
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almost m-continuous multifunctions and presented the relationships between
m-continuity [8] and almost m-continuity. In 2020, Viriyapong and Boonpok
[12] introduced and investigated the notion of almost (τ1, τ2)α-continuous
multifunctions. Laprom et al. [6] introduced and studied the notion of al-
most β(τ1, τ2)-continuous multifunctions. Moreover, several characterizations
of almost (τ1, τ2)δ-semicontinuous multifunctions and almost weakly (τ1, τ2)-
continuous multifunctions were established in [4] and [3], respectively. In
this paper, we introduce the notion of almost (τ1, τ2)-continuous multifunc-
tions. In addition, we investigate some characterizations of almost (τ1, τ2)-
continuous multifunctions.

2 Preliminaries

Throughout the paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [5] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [5] of A and is denoted by τ1τ2-Int(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For
a multifunction F : X → Y , following [1] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each
A ⊆ X , F (A) = ∪x∈AF (x).

3 Almost (τ1, τ2)-continuous multifunctions

We begin this section by introducing the notion of almost (τ1, τ2)-continuous
multifunctions.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to
be almost (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open sets
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V1, V2 of Y such that F (x) ⊆ V1 and F (x) ∩ V2 6= ∅, there exists a τ1τ2-
open set U of X containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V1)) and
σ1σ2-Int(σ1σ2-Cl(V2)) ∩ F (z) 6= ∅ for every z ∈ U .

Theorem 3.2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is almost (τ1, τ2)-continuous;

(2)

F+(V1) ∩ F−(V2)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2))))

for every σ1σ2-open sets V1, V2 of Y ;

(3)

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K1))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K2))))

⊆ F−(K1) ∪ F+(K2)

for every σ1σ2-closed sets K1, K2 of Y ;

(4)

τ1τ2-Cl[F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B1))))

∪ F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B2))))]

⊆ F−(σ1σ2-Cl(B1)) ∪ F+(σ1σ2-Cl(B2))

for every subsets B1, B2 of Y ;

(5)

F+(σ1σ2-Int(B1)) ∩ F−(σ1σ2-Int(B2))

⊆ τ1τ2-Int[F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B1))))

∩ F−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B2))))]

for every subsets B1, B2 of Y .

Proof. (1) ⇒ (2): Let V1, V2 be any σ1σ2-open sets of Y such that

x ∈ F+(V1) ∩ F−(V2).
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Then F (x) ⊆ V1 and F (x) ∩ V2 6= ∅. By (1), there exists a τ1τ2-open set U
of X containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V1)) and

σ1σ2-Int(σ1σ2-Cl(V2)) ∩ F (z) 6= ∅

for each z ∈ U . Therefore,

U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2))).

Thus, x ∈ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2))))

and hence

F+(V1) ∩ F−(V2)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2)))).

(2) ⇒ (3): Let K1, K2 be any σ1σ2-closed sets of Y . Then Y −K1 and
Y −K2 are σ1σ2-open sets of Y and by (2), we have

X − (F−(K1) ∪ F+(K2))

= F+(Y −K1) ∩ F−(Y −K2)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(Y −K1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(Y −K2))))

= X − τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K1))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K2))))

and hence

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K1))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(K2))))

⊆ F−(K1) ∪ F+(K2).

(3) ⇒ (4): Let B1, B2 be any subsets of Y . Then σ1σ2-Cl(B1) and
σ1σ2-Cl(B2) are σ1σ2-closed in Y and by (3),

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B1)))) ∪ F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B2)))))

⊆ F−(σ1σ2-Cl(B1)) ∪ F+(σ1σ2-Cl(B2)).

(4) ⇒ (5): Let B1, B2 be any subsets of Y . By (4), we have

F−(σ1σ2-Int(B1)) ∩ F+(σ1σ2-Int(B2))

= X − (F+(σ1σ2-Cl(Y − B1)) ∪ F−(σ1σ2-Cl(Y − B2)))

⊆ X − τ1τ2-Cl[F
+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Y −B1))))

∪ F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Y −B2))))]

= τ1τ2-Int[F
−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B1))))

∩ F+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B2))))].
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(5) ⇒ (2): The proof is obvious.
(2) ⇒ (1): Let V1, V2 be any σ1σ2-open sets of Y such that

x ∈ F+(V1) ∩ F−(V2).

By (2), we have

x ∈ F+(V1) ∩ F−(V2)

⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2)))).

Then, there exists a τ1τ2-open set U of X such that

x ∈ U ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V1))) ∩ F−(σ1σ2-Int(σ1σ2-Cl(V2))).

Thus, F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V1)) and F (z) ∩ σ1σ2-Int(σ1σ2-Cl(V2)) 6= ∅
for every z ∈ U . This shows that F is almost (τ1, τ2)-continuous.

Definition 3.3. [2] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
almost (τ1, τ2)-continuous at a point x ∈ X if for and each σ1σ2-open set V
of Y containing f(x), there exists a τ1τ2-open set U of X containing x such
that f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A function f : (X, τ1, τ2) → (Y, σ1, σ2) is
said to be almost (τ1, τ2)-continuous if f has this property at each point of
X.

Corollary 3.4. [2] For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following
properties are equivalent:

(1) f is almost (τ1, τ2)-continuous;

(2) f−1(V ) ⊆ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set

V of Y ;

(3) τ1τ2-Cl(f
−1(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ f−1(K) for every σ1σ2-closed

set K of Y ;

(4) τ1τ2-Cl(f
−1(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ f−1(σ1σ2-Cl(B)) for ev-

ery subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for

every subset B of Y .
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