International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1299–1304

M CS

(au_1, au_2) -continuity and $(au_1, au_2) heta$ -closed sets

Chalongchai Klanarong¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: chalongchai.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received March 15, 2024, Accepted April 26, 2024, Published June 1, 2024)

Abstract

In this paper, we characterize upper and lower (τ_1, τ_2) -continuous multifunctions by utilizing the notions of $(\tau_1, \tau_2)\theta$ -closed sets and $(\tau_1, \tau_2)\theta$ -open sets.

1 Introduction

Topology deals with all questions directly or indirectly related to continuity. Semi-open sets, preopen sets, α -open sets and β -open sets play important roles in generalizations of continuity. Using these sets, many authors introduced and investigated various types of weak forms of continuity for functions

Key words and phrases: $(\tau_1, \tau_2)\theta$ -closed set, upper (τ_1, τ_2) -continuous multifunction, lower (τ_1, τ_2) -continuous multifunction. AMS (MOS) Subject Classifications: 54C08, 54C60, 54E55. The corresponding author is Chalongchai Klanarong. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net and multifunctions. In 1993, Popa and Noiri [9] obtained some characterizations of upper and lower α -continuous multifunctions. Moreover, Popa and Noiri [8] introduced and studied the notions of upper and lower β -continuous multifunctions. In 2000, Noiri and Popa [7] investigated the concepts upper and lower *M*-continuous multifunctions as multifunctions defined between sets satisfying certain minimal conditions. Popa and Noiri [10] introduced and studied the notion of *m*-continuous multifunctions. Laprom et al. [6] introduced and studied the notions of upper and lower $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [12] introduced and investigated the concepts of upper and lower $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Furthermore, several characterizations of $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions and almost weakly (τ_1, τ_2) -continuous multifunctions were investigated in [4] and [3], respectively. In this paper, we investigate several characterizations of upper and lower $(\tau_1, \tau_2)\theta$ -continuous multifunctions by utilizing the notions of $(\tau_1, \tau_2)\theta$ -closed sets and $(\tau_1, \tau_2)\theta$ -open sets.

2 Preliminaries

Throughout this paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl $(\tau_2$ -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [5] of A and is denoted by $\tau_1 \tau_2$ -Int(A). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ cluster point [12] of A if $\tau_1 \tau_2$ -Cl(U) $\cap A \neq \emptyset$ for every $\tau_1 \tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [12] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [12] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [12] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For (τ_1, τ_2) -continuity and...

a multifunction $F : X \to Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3 Characterizations of upper and lower (τ_1, τ_2) continuous multifunctions

In this section, we investigate some characterizations of upper and lower (τ_1, τ_2) -continuous multifunctions.

Definition 3.1. [11] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be:

- (1) upper (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \subseteq V$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq V$;
- (2) lower (τ_1, τ_2) -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set Vof Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of Xcontaining x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$.

Lemma 3.2. [11] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) $F^+(V)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $F^{-}(K)$ is $\tau_{1}\tau_{2}$ -closed in X for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (4) $\tau_1\tau_2$ -Cl($F^-(B)$) $\subseteq F^-(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^+(\sigma_1\sigma_2\operatorname{-Int}(B)) \subseteq \tau_1\tau_2\operatorname{-Int}(F^+(B))$ for every subset B of Y.

Definition 3.3. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -regular if for each $\tau_1\tau_2$ -closed set F and each $x \notin F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 3.4. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) -regular if and only if for each $x \in X$ and each $\tau_1\tau_2$ -open set U containing x, there exists a $\tau_1\tau_2$ -open set V such that $x \in V \subseteq \tau_1\tau_2$ - $Cl(V) \subseteq U$.

Lemma 3.5. Let (X, τ_1, τ_2) be a (τ_1, τ_2) -regular space. Then, the following properties hold:

- (1) $\tau_1 \tau_2 Cl(A) = (\tau_1, \tau_2)\theta Cl(A)$ for every subset A of X.
- (2) Every $\tau_1 \tau_2$ -open set is $(\tau_1, \tau_2)\theta$ -open.

Proof. (1) In general, we have $\tau_1\tau_2$ -Cl(A) $\subseteq (\tau_1, \tau_2)\theta$ -Cl(A) for every subset A of X. Next, we show that $(\tau_1, \tau_2)\theta$ -Cl(A) $\subseteq \tau_1\tau_2$ -Cl(A). Let

$$x \in (\tau_1, \tau_2)\theta$$
-Cl(A)

and U be any $\tau_1\tau_2$ -open set of X containing x. By Lemma 3.4, there exists a $\tau_1\tau_2$ -open set V such that $x \in V \subseteq \tau_1\tau_2$ -Cl(V) $\subseteq U$. Since

$$x \in (\tau_1, \tau_2)\theta$$
-Cl(A),

it follows that $\tau_1\tau_2$ -Cl(V) $\cap A \neq \emptyset$ and hence $U \cap A \neq \emptyset$. Thus, $x \in \tau_1\tau_2$ -Cl(A) and so $(\tau_1, \tau_2)\theta$ -Cl(A) $\subseteq \tau_1\tau_2$ -Cl(A).

(2) Let V be a $\tau_1 \tau_2$ -open set. By (1), we have

$$X - V = \tau_1 \tau_2 \operatorname{-Cl}(X - V) = (\tau_1, \tau_2)\theta \operatorname{-Cl}(X - V)$$

and hence X - V is $(\tau_1, \tau_2)\theta$ -closed. Thus, V is $(\tau_1, \tau_2)\theta$ -open.

Theorem 3.6. Let (Y, σ_1, σ_2) be a (σ_1, σ_2) -regular space. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper (τ_1, τ_2) -continuous;
- (2) $F^{-}((\sigma_1, \sigma_2)\theta Cl(B))$ is $\tau_1\tau_2$ -closed in X for every subset B of Y;
- (3) $F^{-}(K)$ is $\tau_{1}\tau_{2}$ -closed in X for every $(\sigma_{1}, \sigma_{2})\theta$ -closed set K of Y;
- (4) $F^+(V)$ is $\tau_1\tau_2$ -open in X for every $(\sigma_1, \sigma_2)\theta$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. By Lemma 3.5, $(\sigma_1, \sigma_2)\theta$ -Cl(*B*) is $\sigma_1\sigma_2$ -closed in *Y*. Since *F* is upper (τ_1, τ_2) -continuous, by Lemma 3.2

$$F^{-}((\sigma_1, \sigma_2)\theta$$
-Cl $(B))$

is $\tau_1 \tau_2$ -closed in X.

(2) \Rightarrow (3): Let K be any $(\sigma_1, \sigma_2)\theta$ -closed set of Y. Then, $(\sigma_1, \sigma_2)\theta$ -Cl(K) = K and by (2), we have $F^-(K)$ is $\tau_1\tau_2$ -closed in X.

 (τ_1, τ_2) -continuity and...

(3) \Rightarrow (4): This follows from the fact that $F^+(Y - B) = X - F^-(B)$ for any subset B of Y.

(4) \Rightarrow (1): Let V be any $\sigma_1 \sigma_2$ -open set of Y. Since (Y, σ_1, σ_2) is (σ_1, σ_2) -regular, we have V is $(\sigma_1, \sigma_2)\theta$ -open in Y and by (4), $F^+(V)$ is $\tau_1 \tau_2$ -open in X. Thus, F is upper (τ_1, τ_2) -continuous by Lemma 3.2.

Theorem 3.7. Let (Y, σ_1, σ_2) be a (σ_1, σ_2) -regular space. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower (τ_1, τ_2) -continuous;
- (2) $F^+((\sigma_1, \sigma_2)\theta Cl(B))$ is $\tau_1\tau_2$ -closed in X for every subset B of Y;
- (3) $F^+(K)$ is $\tau_1\tau_2$ -closed in X for every $(\sigma_1, \sigma_2)\theta$ -closed set K of Y;
- (4) $F^{-}(V)$ is $\tau_{1}\tau_{2}$ -open in X for every $(\sigma_{1}, \sigma_{2})\theta$ -open set V of Y.

Proof. The proof is similar to that of Theorem 3.6.

Definition 3.8. [2] A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) -continuous if f has this property at each point of X.

Corollary 3.9. Let (Y, σ_1, σ_2) be a (σ_1, σ_2) -regular space. For a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) $f^{-1}((\sigma_1, \sigma_2)\theta Cl(B))$ is $\tau_1\tau_2$ -closed in X for every subset B of Y;
- (3) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for every $(\sigma_1, \sigma_2)\theta$ -closed set K of Y;
- (4) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for every $(\sigma_1, \sigma_2)\theta$ -open set V of Y.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [2] C. Boonpok, N. Srisarakham, (τ_1, τ_2) -continuity for functions, Asia Pac. J. Math., **11**, (2024), 21.
- [3] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) continuity, Eur. J. Pure Appl. Math., **14**, no. 4, (2021), 1212–1225.
- [4] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [6] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math., **2020** (2020), 4020971.
- [7] T. Noiri, V. Popa, On upper and lower *M*-continuous multifunctions, Filomat, 14, (2000), 73–86.
- [8] V. Popa, T. Noiri, On upper and lower β -continuous multifunctions, Real Analysis Exchange, **22** (1996/97), 362–376.
- [9] V. Popa, T. Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca, **43** (1996), 381–396.
- [10] V. Popa, T. Noiri, On *m*-continuous multifunctions, Bul. St. Univ. "Politehnica", Ser. Mat. Fiz. Timişoara, 46, no. 60, (2001), 1–12.
- [11] P. Pue-on, S. Sompong, C. Boonpok, Upper and lower (τ_1, τ_2) -continuous multifunctions, (submitted).
- [12] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.