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Abstract

In this paper, we introduce a pseudo near semiring (PNS) which is
a novel generalization of additive inverse semirings and near semirings.
Moreover, we investigate some interesting algebraic properties of PNSs
including the notion of additive idempotents. Furthermore, we provide
some results on pseudo inverse elements.

1 Introduction

A natural generalization of rings, semirings were first introduced by Vandiver
[18] in 1934. Vandiver defined a semiring as an algebraic system consisting
of a nonempty set S equipped with two binary operations, addition (+)
and multiplication (·), such that (S,+) and (S, ·) are semigroups, satisfying
z · (x + y) = z · x + z · y and (x + y) · z = x · z + y · z for all x, y, z ∈ N. A
subset T of S is called a subsemiring of S if it is also a semiring under the
same binary operations.

Karvellas [12] studied the notion of additive inverse semiring. A semiring
S is called an additive inverse semiring if for every a ∈ S there exists a
unique element a′ ∈ S, called the additive pseudo inverse of a such that
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a+a′+a = a and a′+a+a′ = a′. Bandlet and Petrich [4] characterized inverse
semirings as a subdirect product of rings and distributive lattices. Javed and
Aslam [9] introduced the notion of Lie ideals in additive inverse semirings and
investigated some commutativity conditions on additive inverse semirings
with the help of Lie ideals and derivations. Javed, Aslam, and Hussain [10]
introduced the notion of MA-semiring which is an additive inverse semiring
satisfying the condition that for each a ∈ S, a + a′ is in the center Z(S) of
S.

Near semirings were first introduced by van Hoorn and van Rootselaar
[8]. By a near semiring, we mean an algebraic structure (N,+, ·) such that
(N,+) and (N, ·) are semigroups, and it satisfies only one (left or right)
distribution law; i.e., z · (x + y) = z · x + z · y for all x, y, z ∈ N . Building
on this concept, van Hoorn [7] further extended the concept of a Jacobson
radical from rings to zero-symmetric near-semirings. Many interesting and
elegant properties of these near semirings have been studied by Balakrishnan
and Perumal [3], Perumal et al. [14, 15], Sardar and Mukherjee [17], as well
as others [1, 2, 5, 13,16]). In addition, near semirings hold significance not
only as a natural generalization of semirings and near rings but also for their
practical applications in computer science (see [11] and [6]).

In this paper, we introduce a novel algebraic structure called a pseudo
near semiring (PNS) which is a generalization of both an additive inverse
semiring and a near semiring. We also investigate some interesting algebraic
properties of PNSs. We discuss the notion of additive idempotents in PNSs
and provide some results on pseudo inverse elements.

2 Main results

In this section, we first review near semirings and then introduce a new gen-
eralization called pseudo near semiring.

A left near semiring is a nonempty set N together with two binary oper-
ations ‘+’ and ‘·’ such that (N,+) and (N, ·) are semigroups, satisfying left
distribution law z · (x+ y) = z · x+ z · y for all x, y, z ∈ N .
A right near semiring can be defined in a similar fashion.

Definition 2.1. A nonempty set N together with two binary operations called
addition and multiplication, denoted by + and · respectively, is called a pseudo
left near semiring if

(i.) (N,+, ·) is a left near semiring.
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(ii.) There exists 0 ∈ N such that x + 0 = x = 0 + x and x · 0 = 0 = 0 · x
for all x ∈ N . The element 0 ∈ N is called the zero element of N .

(iii.) For each x ∈ N , there exists a unique y ∈ N such that x = x + y + x

and y = y + x + y for all x, y ∈ N . The element y ∈ N is called the
pseudo inverse of x, denoted by x′.

If (N,+, ·) is a right near semiring instead of condition (i), then we call
(N,+, ·) a pseudo right near semiring.

Unless otherwise specified. by a pseudo near semiring (briefly PNS), we
mean only a pseudo left near semiring. We usually write (N,+, ·) simply as
N .

Now, we give an example of a pseudo near semiring.

Example 2.2. Let N = {0, a, b, c} with addition (+) and multiplication (·)
tables defined as follows:

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

· 0 a b c

0 0 0 0 0
a 0 a 0 a

b 0 0 0 0
c 0 c 0 c

Clearly, N is a pseudo near semiring.

Theorem 2.3. In a pseudo near semiring N , the zero element of N is
unique.

Proof. The proof is straightforward and hence is omitted.

Notation: Throughout this paper, we will assume (N,+, ·) to be a pseudo
near semiring. We denote the zero element of N by 0.

Definition 2.4. Let (N,+, ·) be a pseudo near semiring and let S be a
subset of N . Then S is called a subpseudo near semiring of N if

(i.) 0 ∈ S.

(ii.) x′ ∈ S for all x ∈ S.

(iii.) x+ y ∈ S for all x, y ∈ S.

(iv.) xy ∈ S for all x, y ∈ S.



1096 S. Jadpimai, U. Leerawat

The following theorem is easy to prove.

Theorem 2.5. Let Λ be a nonempty index set and let {Sλ}λ∈Λ be a family
of subpseudo near semirings of N . Then ∩λ∈ΛSλ is a subpseudo near
semiring of N .

Definition 2.6. A pseudo near semiring N is additively commutative if
x+ y = y + x for all x, y ∈ N .

Definition 2.7. Let N be a pseudo near semiring. An element x ∈ N is
called an additive idempotent element if x = x+ x. A pseudo near semiring
N is called an additive idempotent pseudo near semiring if every element of
N is additive idempotent.

For any pseudo near semiring N , we define I(N) = {x ∈ N |x+ x = x}.

Theorem 2.8. Let N be a pseudo near semiring. Then

(i.) x+ x′, x′ + x ∈ I(N) for all x ∈ N .

(ii.) (x′)′ = x for all x ∈ N..

Proof. Let x ∈ N .
(i) (x+ x′) + (x+ x′) = x+ (x′ + x+ x′) = x+ x′ and
(x′ + x) + (x′ + x) = x′ + (x+ x′ + x) = x′ + x. Hence, x+ x′, x′ + x ∈ I(N).
(ii) Let y = x′. We have x = x+ y + x and y = y + x+ y. By uniqueness
the pseudo inverse of y, then y′ = x. Hence (x′)′ = x.

Theorem 2.9. Let N be a pseudo near semiring. Then I(N) is an
additively commutative subpseudo near semiring of N .

Proof. Clearly, I(N) ⊆ N and 0 ∈ I(N). Let x, y ∈ I(N). Let (x+ y)′ = z.
We have (x+ y) + z + (x+ y) = (x+ y) and z + (x+ y) + z = z. Then
(z + x) + y + (z + x) = z + x and (y + z) + x+ (y + z) = y + z. Let
w = z + x. We have
(x+y)+w+(x+y) = (x+y)+(z+x)+(x+y) = (x+y)+z+(x+y) = (x+y),
and
w+(x+y)+w = (z+x)+(x+y)+(z+x) = (z+x)+y+(z+x) = z+x = w.
This implies that (x+ y)′ = w. Hence z = w = z + x. Similarly, let
v = y + z. Then
(x+y)+v+(x+y) = (x+y)+(y+z)+(x+y) = (x+y)+z+(x+y) = x+y

and
v+(x+y)+v = (y+z)+(x+y)+(y+z) = (y+z)+x+(y+z) = y+z = v.
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This implies that (x+ y)′ = v. Hence z = v = y + z. Thus
z + z = (x+ y)′ + (x+ y)′ = w + v = z + x+ y + z = z. Hence z ∈ I(N).
Since z + z + z = z + z = z, z′ = z. Then, by Theorem 2.8(ii),
(x+ y)′ = z = z′ = ((x+ y)′)′ = x+ y. This follows that x+ y ∈ I(N).
Next, we will show that x+ y = y + x. Since
x, y ∈ I(N),(x+ y) + (y + x) + (x+ y) = x+ y + x+ y = x+ y and
(y + x) + (x+ y) + (y + x) = y + x+ y + x = y + x. Hence (x+ y)′ = y + x.
Therefore y + x = (x+ y)′ = x+ y. So x+ y = y+ x. This shows that I(N)
is additively commutative. Clearly, xy + xy = x(y + y) = xy. Hence
xy ∈ I(N). Since I(N) is additively commutative and
x, x+ x′ ∈ I(N), x = x+ x′ + x = x+ x+ x′ = x+ x′. Then
x′ = x′ + x+ x′ = x′ + (x+ x′) + x′ = x′ + x′. This implies that x′ ∈ I(N).
Therefore, I(N) is a subpseudo near semiring of N .

Theorem 2.10. Let N be a pseudo near semiring. Then

(i.) (x+ y)′ = y′ + x′ = x′ + y′ for all x, y ∈ N .

(ii.) (xy)′ = xy′ for all x, y ∈ N .

(iii.) (x′y′)′ = x′y for all x, y ∈ N .

Proof. Let x, y ∈ N .
(i) By Theorems 2.8 and 2.9, we have x+ x′, x′ + x, y + y′, y′ + y ∈ I(N)
and (y + y′) + (x′ + x) = (x′ + x) + (y + y′).

(x+ y) + (y′ + x′) + (x+ y) = x+ (y + y′) + (x′ + x) + y

= x+ (x′ + x) + (y + y′) + y = x+ y,

and (y′ + x′) + (x+ y) + (y′ + x′) = y′ + (x′ + x) + (y + y′) + x′

= y′ + (y + y′) + (x′ + x) + x′ = y′ + x′.

Therefore (x+ y)′ = y′ + x′. Since I(N) is an additively commutative
subpseudo near semiring of N and x′, y′ ∈ I(N), y′ + x′ = x′ + y′. Hence
(x+ y)′ = y′ + x′ = x′ + y′.
(ii) Since y = y + y′ + y and y′ = y′ + y + y′,
xy + xy′ + xy = x(y + y′ + y) = xy and
xy′ + xy + xy′ = x(y′ + y + y′) = xy′. Thus (xy)′ = xy′.
(iii) By (ii) and Theorem 2.8 (ii) (x′y′)′ = x′(y′)′ = x′y.

Theorem 2.11. Let N be a pseudo near semiring and let x, y ∈ N be such
that x+ y = 0. Then x = y′.
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Proof. Let x, y ∈ N be such that x+ y = 0. Clearly, 0 = 0′ = (x+ y)′ = y′

+x′ = x′ + y′ By using Theorem 2.10(i), we get x = x+ 0 = x+ x′ + y′ = x

+x′ + (x+ y) + y′ = x+ y + y′ = y′.

Theorem 2.12. In a pseudo near semiring N , if an element x ∈ I(N)
satisfies the condition x(x+ x′) = x+ x′, then xn = x for all positive integer
n.

Proof. Let x ∈ I(N) be such that x(x+ x′) = x+ x′. Then, by Theorem
2.8, we have x+ x′, x′ + x ∈ I(N). Since I(N) is an additively commutative
subpseudo near semiring of N , x = x+ x′ + x = x+ x+ x′ = x+ x′. Hence
x2 = x(x+ x′) = x+ x′ = x. This implies x2 = x. Therefore, by the
principle of mathematical induction, xn = x for all positive integers n.
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