Very Short Note on Burning Trees with Sufficiently Long Arms

Eugene Jun Tong Leong, Wen Chean Teh
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM, Malaysia
email: EugeneLeong@student.usm.my, dasmenteh@usm.my

(Received March 10, 2024, Accepted May 24, 2024, Published June 1, 2024)

Abstract

Burning number is a discrete graph algorithm parameter inspired by the spread of social contagion. Bonato et al. conjectured in 2016 that for any connected graph of order N^{2}, the burning number is at most N. In this work, we prove that an earlier slightly strengthened burning number conjecture holds for trees with sufficiently long arms.

1 Introduction

In 2016, Bonato et al. introduced graph burning as an ideal simplified model motivated to measure how fast can an influence spread throughout a social network [2]. The burning process begins with all vertices of a simple graph in an unburned state. In each round, a vertex is selected as a new burning source and vertices adjacent to an earlier burned vertices will also become burned. The burning number of a graph G, denoted $b(G)$, is the least number of rounds needed for all vertices of the graph to be burned. We say that G is m-burnable if G can be completely burned in m rounds.

Studies of graph burning have focused on trees because the burning number for any connected graph is the minimum burning number of its spanning

Key words and phrases: Burning number, graph algorithm, path forests. AMS (MOS) Subject Classifications: 05C85, 68R10.
The corresponding author is Wen Chean Teh.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
trees [2]. It was conjectured early on that T is m-burnable for any tree T with m^{2} vertices [2]. Recently, a stronger conjecture, which says that every tree with n leaves of order $m^{2}+n-2$ is m-burnable with exceptions when $m \leq n$, was established to hold for spiders [3] and double spiders [4]. In this very short exposition, we aim to provide extra support to the stronger burning number conjecture by verifying it for all trees with sufficiently long arms. For basic facts and more literature review and references, the reader can refer to a comprehensive survey [1].

Finally, standard terminology and notations in graph theory are mostly adopted and assumed to be understood. Every leaf of a tree is connected to the closest branch vertex by a unique path, called an arm, whereas the path connecting two branch vertices are called an internal path. The first vertex of an arm refers to the vertex on the arm next to the branch vertex. The set of all vertices belonging to an internal path including the branch vertices is denoted by body (T).

2 Main results

For $n \geq 2$, let L_{n} denote the least integer with the property that: if T is a path forest of order m^{2} with n paths each of order at least L_{n}, then $b(T)=m$. The existence of L_{n} was proved in [4]. Our first theorem implies that any tree of order $m^{2}+n-2$ with n arms each of length at least $L_{n}+m-1$ is m-burnable. Our second theorem improves the sufficient length but only for the case of trees with three branch vertices.

Lemma 2.1. Let $m \geq 2$. Suppose T is a tree such that $|V(T)| \leq m^{2}+m-1$ and all arms have length $m-1$. There exist $x_{1}, x_{2}, \ldots, x_{t} \in V(T)$ such that

1. $\left\{x_{i} \mid 1 \leq i \leq t\right\} \subseteq \operatorname{body}(T) \subseteq \bigcup_{i=1}^{t} N_{m-i}\left[x_{i}\right]$; and
2. $\left|\bigcup_{i=1}^{t} N_{m-i}\left[x_{i}\right]\right| \geq \sum_{i=1}^{t}[2 m-(2 i-1)]+m-1$.

Proof. We argue by induction on the number of branch vertices. The base case is trivial as there is only one branch vertex. For the induction step, suppose T has k branch vertices with $k \geq 2$ and $|V(T)| \leq m^{2}+m-1$. Select a branch vertex v such that there is a unique internal path P that joins v to another branch vertex, say u. Next, remove the internal path including v and all arms joined to v, but join a new arm (with new vertices) of length $m-1$ to u, resulting in a tree T^{\prime}. Applying the induction hypothesis on T^{\prime}, we obtain $x_{1}, x_{2}, \ldots, x_{t} \in \operatorname{body}\left(T^{\prime}\right) \subseteq \operatorname{body}(T)$. If $\operatorname{body}(T) \subseteq \bigcup_{i=1}^{t} N_{m-i}^{T}\left[x_{i}\right]$, then by
the definition of T^{\prime}, it is easy to see that $\left|\bigcup_{i=1}^{t} N_{m-i}^{T}\left[x_{i}\right]\right| \geq\left|\bigcup_{i=1}^{t} N_{m-i}^{T^{\prime}}\left[x_{i}\right]\right|$ and thus $x_{1}, x_{2}, \ldots, x_{t}$ have the required property.

Now, suppose $E=\operatorname{body}(T) \backslash \bigcup_{i=1}^{t} N_{m-i}^{T}\left[x_{i}\right] \neq \emptyset$. Note that E is a segment of the internal path P between v and a vertex in P and $\left|\bigcup_{i=1}^{t} N_{m-i}^{T}\left[x_{i}\right]\right|=$ $\left|\bigcup_{i=1}^{t} N_{m-i}^{T^{\prime}}\left[x_{i}\right]\right|$. Clearly, there is a least t^{\prime} such that $E \subseteq \bigcup_{i=t+1}^{t+t^{\prime}} N_{m-i}^{T}\left[x_{i}\right]$ and $\left|\bigcup_{i=t+1}^{t+t^{\prime}} N_{m-i}^{T}\left[x_{i}\right]\right| \geq \sum_{i=t+1}^{t+t^{\prime}}[2 m-(2 i-1)]$ for some $x_{t+1}, x_{t+2}, \ldots, x_{t+t^{\prime}} \in E$ where $N_{m-i}^{T}\left[x_{i}\right]$ for $t+1 \leq i \leq t+t^{\prime}-1$ induce disjoint subpaths of E and $x_{t+t^{\prime}}$ can be chosen to be v when necessary. (The condition $|V(T)| \leq$ $m^{2}+m-1$ conveniently ensures that t^{\prime} exists.) Therefore, $x_{1}, x_{2}, \ldots, x_{t+t^{\prime}}$ have the required property.

Theorem 2.2. Let $m>n \geq 3$. Suppose T is a tree with n arms each of length at least $L_{n}+m-1$. If $|V(T)| \leq m^{2}+m-1$, then T is m-burnable.

Proof. Consider the subtree T^{\prime} of T by reducing the length of every arm to $m-1$. Applying Lemma 2.1 on T^{\prime}, it follows that for some t, all vertices in body (T) can be burned in m rounds using the first t burning sources placed within body (T). The fire from each of the t burning sources can burn at most $m-1$ vertices on each arm. The remaining unburned vertices form a path forest of order at most $m^{2}+m-1-\left(\sum_{i=1}^{t}[2 m-(2 i-1)]+m-1\right)=(m-t)^{2}$ vertices, where each path has order at least L_{n}. Therefore, it can be burned by the remaining $m-t$ burning sources by the definition of L_{n}.

For the remainder of this section, let $m>n \geq 5$. Suppose T is a tree with three branch vertices and n arms. Let $v_{l}^{b r}, v_{r}^{b r}$, and $v_{m}^{b r}$ denote the left, right, and middle branch vertices of T, respectively. Also, let $d=|\operatorname{body}(T)|$.

Lemma 2.3. Suppose all arms of T have length L with $3 \leq 4 m-2-4 L \leq$ $d \leq 4 m-4-2 L$. Let $r=4 m-4-2 L-d$. Then there exist $v_{1}, v_{2} \in \operatorname{body}(T)$ such that $N=N_{m-1}\left[v_{1}\right] \cup N_{m-2}\left[v_{2}\right]$ contains every vertex of T except possibly the last $L-\left\lfloor\frac{r}{2}\right\rfloor-1$ vertices of any arm joined to $v_{m}^{b r}$ and thus $|N| \geq 4 m+n-6$.

Proof. Let $v_{1}, v_{2} \in \operatorname{body}(T)$ be the vertices given by $\operatorname{dist}\left(v_{1}, v_{l}^{b r}\right)=m-1-L$ and $\operatorname{dist}\left(v_{2}, v_{r}^{b r}\right)=m-2-L$. If $\operatorname{dist}\left(v_{1}, v_{m}^{b r}\right) \leq m-\left\lfloor\frac{r}{2}\right\rfloor-2$ or $\operatorname{dist}\left(v_{2}, v_{m}^{b r}\right) \leq$ $m-\left\lfloor\frac{r}{2}\right\rfloor-3$, then v_{1} and v_{2} has the required property. It can be verified that $v_{m}^{b r}$ satisfies the disjunctive property unless $v_{m}^{b r}$ is one of at most two vertices (labelled by $*$ in Figure 1). In the exceptional case(s), it suffices to swap the choices of v_{1} and v_{2}. Since at least two arms are joined to each $v_{l}^{b r}$ and $v_{r}^{b r}$, it follows that $|N| \geq d+4 L+(n-4)\left(\left\lfloor\frac{r}{2}\right\rfloor+1\right) \geq(4 m-2)+(n-4)$.

Figure 1: The two exceptional cases for the case r is even.

Lemma 2.4. Suppose all arms of T have length $L=\left\lceil\frac{2 m-4}{n}\right\rceil+1$. If $2 m-2 \leq$ $d \leq 4 m-6$, then there exist $v_{1}, v_{2} \in \operatorname{body}(T)$ such that $N=N_{m-1}\left[v_{1}\right] \cup$ $N_{m-2}\left[v_{2}\right] \supseteq \operatorname{body}(T)$ and $|N| \geq 4 m+n-6$.

Proof. For the case $4 m-4-2 L \leq d \leq 4 m-6$, first we let $l_{1}=\left\lfloor\frac{4 m-4-d}{2}\right\rfloor$ and $l_{2}=\left\lceil\frac{4 m-4-d}{2}\right\rceil$. Note that $l_{1}+l_{2}+d=4 m-4$. Clearly, we can choose $v_{1}, v_{2} \in \operatorname{body}(T)$ such that N includes $\operatorname{body}(T)$ and contains the first l_{1} vertices of any arm joined to $v_{l}^{b r}$ and the first l_{2} vertices of any arm joined to $v_{r}^{b r}$. By swapping v_{1} and v_{2} if necessary, N contains at least the first vertex of any arm joined to $v_{m}^{b r}$. Hence,
$|N| \geq 2\left(l_{1}+l_{2}\right)+n-4+d=8 m+n-12-d \geq 8 m+n-12-4 m+6=4 m+n-6$.
The case $4 m-2-4 L \leq d \leq 4 m-4-2 L$ is taken care by Lemma 2.3. In particular, when $d=4 m-2-4 L$, there exist $v_{1}, v_{2} \in \operatorname{body}(T)$ such that N contains all vertices of T. It follows that such v_{1} and v_{2} exist when $2 m-2 \leq d \leq 4 m-2-4 L$. It remains to note that when $d=2 m-2$, $|V(T)|=d+n L \geq 2 m-2+n\left(\frac{2 m-4}{n}+1\right)=4 m+n-6$.

Theorem 2.5. Suppose every arm of T has length at least $L_{n}+\left\lceil\frac{2 m-4}{n}\right\rceil+1$. If the order of T is at most $m^{2}+n-2$, then T is m-burnable.

Proof. Let t be the least such that $d+2 \leq \sum_{i=1}^{t}[2 m-(2 i-1)]$. First, consider the case $t=2$. Applying Lemma 2.4 on the subtree of T with the length of every arm reduced to $\left\lceil\frac{2 m-4}{n}\right\rceil+1$, it follows that the first two burning sources can be chosen such that it burns at least $4 m+n-6$ vertices of T in m rounds such that the remaining unburned vertices form a path forest of order at most $(m-2)^{2}$ consisting of n paths each of order at least L_{n}. Hence, the path forest can be burned using the remaining $m-2$ burning sources.

Now, suppose $t>2$. Let d_{1} (respectively, d_{2}) denote the number of vertices strictly between $v_{m}^{b r}$ and $v_{l}^{b r}$ (respectively, $v_{r}^{b r}$. Note that max $\left\{d_{1}, d_{2}\right\} \geq$ $2 m-4$ because $d>4 m-6$. Hence, we can find I_{1} and I_{2} such that
$I_{1} \cup I_{2}=\{3,4, \ldots, t\}, \sum_{i \in I_{1}}[2 m-(2 i-1)] \leq d_{1}$, and $\sum_{i \in I_{2}}[2 m-(2 i-1)] \leq d_{2}$. Furthermore, if both I_{1} and I_{2} are nonempty, we specially require that $3 \in I_{1}$ and $4 \in I_{2}$. Let T^{\prime} be obtained from T by shortening the two internal paths of T by $\sum_{i \in I_{1}}[2 m-(2 i-1)]$ and $\sum_{i \in I_{2}}[2 m-(2 i-1)]$ respectively and reducing the length of every arm to $\left\lceil\frac{2 m-4}{n}\right\rceil+1$. The conditions on I_{1} and I_{2} would ensure that the next $t-2$ burning sources, alongside with the first two burning sources associated correctly to the two vertices obtained by applying Lemma 2.4 on T^{\prime}, can be chosen such that the remaining unburned vertices of T in m rounds form a path forest of order at most $(m-t)^{2}$ with n paths each of order at least L_{n}. (The special requirement ensures that the additional $t-2$ burning sources all stay within $\operatorname{body}(T)$.)

The proof for the case $t=1$ is much simpler and thus omitted.
As a conclusion, we conjecture that Theorem 2.5 holds generally for any tree (with any number of branch vertices).

Acknowledgment. The corresponding author acknowledges support by the Malaysian Ministry of Higher Education for Fundamental Research Grant Scheme with Project Code: FRGS/1/2023/STG06/USM/02/7.

References

[1] Anthony Bonato, A survey of graph burning, Contrib. Discrete Math., 16, no. 1, (2021), 185-197.
[2] Anthony Bonato, Jeannette Janssen, and Elham Roshanbin, How to burn a graph, Internet Math., 12, No.1-2, (2016), 85-100.
[3] Ta Sheng Tan and Wen Chean Teh, Graph burning: Tight bounds on the burning numbers of path forests and spiders, Appl. Math. Comput., 385, (2020), 125447.
[4] Ta Sheng Tan and Wen Chean Teh, Burnability of double spiders and path forests, Appl. Math. Comput., 438, (2023), 127574.

