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Abstract

When we contract the edges of the generalized Petersen graph
GPG(n, s), we end up with the widely recognized circulant graph
Cn(1, s). Conversely, we can construct GPG(n, s) from Cn(1, s). This
natural connection between the two types of graphs led Beenker and
Van Lint [8] to demonstrate that if Cn(1, s) has a diameter of d, then
GPG(n, s) will have a diameter that is at least d + 1 and at most
d+2. In this paper, we outline the necessary and sufficient conditions
for the diameter of GPG(n, s) to be equal to d+1, as well as providing
sufficient conditions for it to equal d + 2. Moreover, we introduce an
algorithm capable of computing the diameter of a generalized Petersen
graph in a time complexity of O(log n).

1 Introduction

For integers n and s with n ≥ 5, the generalized Petersen graph GPG(n, s)
was defined in [1] (a subclass with n and s relatively prime considered already
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by Coxeter [2]) to have vertex-set V (GPG(n, s)) = {ui, vi : i ∈ Zn}. The
edge-set may be naturally partitioned into three equal parts (note that all
subscripts are assumed modulo n): the outer edges EO(n, s) = {uiui+1 : i ∈
Zn}, the inner edges EI(n, s) = {vivi+s : i ∈ Zn}, and the spokes ES(n, s) =
{uivi : i ∈ Zn}. Thus the edge-set may be defined as E(GPG(n, s)) =
EO(n, s) ∪ EI(n, s) ∪ ES(n, s). We call the ui vertices the outer vertices and
the vi vertices the inner vertices.

The distance dp(i, j) between two vertices i and j in GPG(n, s) is the
length of a shortest path joining i and j. The diameter of GPG(n, s), denoted
by diam(GPG(n, s)), is the maximum distance among all pairs of vertices in
GPG(n, s). Here we are interested in the following problem.

Problem. Given n, s, determine diam(GPG(n, s)).
The exact calculation of the diameter of generalized Petersen graphs is a

well-studied problem: Krishnamoorthy and Krishnamurthy [3] proved that
the diameter of GPG(n, 2) is O(n

4
) when n is odd. Xinmin and Tianming

[4] showed that the diameter of GPG(n, 2) equals the same previous value
when n is even. Zhang et al. [5] proved that the diameter of GPG(n, s) is
O( n

2s
) where s ≥ 3. Ekinci and Gauci [6] have proved that the diameter of

GPG(ts, s) is ⌊ t+s+3
2

⌋ for t ≥ 3 and s ≥ 2. However, there were no formulas
giving exact values for the diameter of GPG(n, s) for all n and s.

2 Circulant graphs

Circulant graphsform an interesting and well-studied class of graphs [7]:
Given n ≥ 4 and 2 ≤ s ≤ ⌊n−1

2
⌋, the circulant graph Cn(1, s) has Zn as a

vertex set and in which two distinct vertices i and j are adjacent if and only
if |i − j|n ∈ {1, s}, where |x|n = min(|x|, n − |x|) is the circular distance
modulo n.

Definition 2.1. In Cn(1, s), a path from a vertex i to another vertex j is
denoted as Pc(i, j) and is represented as the pair (αa±, βc±), where a (or c)
indicates that Pc(i, j) traverses outer (or inner) edges; α (or β) denotes the
number of outer (or inner) edges; The symbol + (or −) indicates that Pc(i, j)
follows the clockwise (or counterclockwise) direction.

Notation 2.2. Let i and j be two vertices of Cn(1, s).
An outer (or inner) edge connecting the vertices i and j and following the

clockwise (+) or counterclockwise (−) direction is represented as i a± j (or
i c± j), respectively.
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The length of the path Pc(i, j) is denoted by ℓ(Pc(i, j)), the number of
outer edges in Pc(i, j) is represented by ℓa(Pc(i, j)), and the number of inner
edges in Pc(i, j) is denoted by ℓc(Pc(i, j)).

Circulant graphs can be obtained from generalized Petersen graphs by
contracting the spokes ES(n, s). By a reversed procedure generalized Petersen
graphs can be obtained from circulant graphs (see Figure 1).

Figure 1: GPG(12, 5) and C12(1, 5).

Notation 2.3. Let i ∈ V (Cn(1, s)) and ui, vi ∈ V (GPG(n, s)) such that
(ui, vi) ∈ E(GPG(n, s)).

Let Tg be the transformation of GPG(n, s) into Cn(1, s). Tg is based on
contracting the spokes from GPG(n, s).

We combine the vertices ui and vi into one single vertex denoted wi =
{ui, vi}. The notation i ≡ wi means that after applying Tg, the vertex i is the
equivalent of wi (in terms of labeling).

Figure 2: Tg and Tc.
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Definition 2.4. We define the transformation of Cn(1, s) into GPG(n, s),
denoted by Tc, as follows.
i ∈ V (Cn(1, s)) ⇒ wi ∈ V (GPG(n, s)) such that i ≡ wi.
(i, i+ s) ∈ E(Cn(1, s)) ⇒ (ui, vi), (vi, vi+s), (vi+s, ui+s) ∈ E(GPG(n, s)).
(i, i + 1) ∈ E(Cn(1, s)) ⇒ (ui, ui+1), (ui, vi), (ui+1, vi+1) ∈ E(GPG(n, s)),
(vi, vi+1) 6∈ E(GPG(n, s)).

Notation 2.5. In GPG(n, s), we denote a path leading from a vertex x to
another vertex y by Pp(x, y). We denote the length of Pp(x, y) by ℓ(Pp(x, y)),
the number of outer edges of Pp(x, y) by ℓa(Pp(x, y)), the number of inner
edges of Pp(x, y) by ℓc(Pp(x, y)), and the number of spokes of Pp(x, y) by
ℓs(Pp(x, y)).

We represent an outer (resp. inner) edge connecting two vertices x and
y of GPG(n, s) and taking the clockwise (+) or the counterclockwise (−)
direction by x a± y (resp. x c± y). A spoke connecting the vertices x and
y can be represented by x spoke y.

3 Diameter of generalized Petersen graphs

The following result shows the distance between any pair of vertices in the
generalized Petersen graph.

Theorem 3.1. Let i, j ∈ V (Cn(1, s)) and wi, wj ∈ V (GPG(n, s)) such that
i ≡ wi and j ≡ wj . Let xi and yj be two vertices of GPG(n, s) such that
xi ∈ wi and yj ∈ wj. We have

dc(i, j) ≤ dp(xi, yj) ≤ dc(i, j) + 2.

Proof. Let i and j be two arbitrary vertices in Cn(1, s). Let wi, wj, xi, yj ∈
V (GPG(n, s)) such that i ≡ wi, j ≡ wj, xi ∈ wi and yj ∈ wj.

Let Psg(xi, yj) denote the shortest path between xi and yj in V (GPG(n, s)).
Let dp(xi, yj) = ℓa(Psg(xi, yj))+ℓc(Psg(xi, yj))+ℓs(Psg(xi, yj)) = ℓa+ℓc+ℓs =
ℓ where ℓs ≥ 0. After applying Tg, there exists a path Pc(i, j) in Cn(1, s) of
length ℓ(Pc(i, j)) = ℓ − ℓs ≤ ℓ. Thus, dc(i, j) ≤ ℓ(Pc(i, j)) ≤ ℓ. Therefore,
dc(i, j) ≤ dp(xi, yj).

Let Psc(i, j) denote the shortest path between i and j in Cn(1, s). Assume
that dc(i, j) = ℓ(Psc(i, j)) = ℓ′. Since Psc(i, j) walks through all the outer
edges before entering to the inner edges, after applying Tc, there exists a path
Pp(xi, yj) in GPG(n, s) that also walks through all the outer edges before
entering to the inner edges and leading from xi to yj. Thus, depending on
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whether xi and yj are inner or outer vertices, Pp(xi, yj) will contain at most
two spokes*; i.e., ℓ(Pp(xi, yj)) ≤ ℓ′+2. Therefore, dp(xi, yj) ≤ dc(i, j)+2.

Since any undirected circulant graph is vertex-transitive, for any pair of
vertices i and j within Cn(S), their distance, denoted as dc(i, j), can be

equivalently expressed as dc(0, z), where z =

{

j − i, if i < j,

n− i+ j, otherwise.

Henceforth, we denote paths leading from the vertex 0 to another vertex i in
Cn(1, s) as Pc(i). The distance of Pc(i) is represented as dc(i).

Beenker and Van Lint [8] have proved that if Cn(1, s) has diameter d,
then GPG(n, s) has diameter at least d + 1 and at most d + 2. It is easy
to verify that for n ∈ {5, 6, 7}, diam(GPG(n, s)) = diam(Cn(1, s)) + 1. For
n ≥ 8, we present the following result.

Theorem 3.2. Let n ≥ 8 and 2 ≤ s ≤ ⌊n−1
2
⌋ and let Vdiam(Cn(1,s)) = {i ∈

V (Cn(1, s)) : dc(i) = diam(Cn(1, s))}. diam(GPG(n, s)) = diam(Cn(1, s))+
1 if and only if the following assessments are satisfied:

1. For all vertices i in Vdiam(Cn(1,s)), there exists a path Pc(i) walking only
through outer edges such that ℓ(Pc(i)) = diam(Cn(1, s));

2. For all vertices i in Vdiam(Cn(1,s)), there exists a path P ′

c(i) walking only
through inner edges such that ℓ(P ′

c(i)) = diam(Cn(1, s)).

Proof. Assume that diam(GPG(n, s)) = diam(Cn(1, s)) + 1 = d + 1. Let
i ∈ Vdiam(Cn(1,s)) and let x0, yi ∈ V (GPG(n, s)) such that 0 ≡ w0, i ≡ wi,
x0 ∈ w0 and yi ∈ wi.

Case 1. x0 = u0

Let Pp(x0, yi) be a path in GPG(n, s) of length d+ 1 represented as follows.
u0  

a+ u1  
a+ . . .  a+ ui  

spoke vi (or u0  
a− un−1  

a− . . .  a−

ui  
spoke vi). We have ℓ(Pp(u0, ui)) = d. So, dp(u0, ui) ≤ ℓ(Pp(u0, ui)) ≤ d.

However, by Theorem 3.1, dp(u0, ui) ≥ d. Thus, dp(u0, ui) = d. Moreover,
ℓ(Pp(u0, vi)) = d+1. So dp(u0, vi) ≤ ℓ(Pp(u0, vi)) ≤ d+1. If we assume that
dp(u0, vi) = d, then there exists a shortest path Psp(u0, vi) in GPG(n, s) such
that dp(u0, vi) = ℓ(Psp(u0, vi)) = d.

Case 1.1. Psp(u0, vi) walks only through outer edges
Since Psp(u0, vi) is represented by u0  

a+ u1  
a+ . . .  a+ ui  

spoke vi
(or by u0  

a− un−1  
a− . . .  a− ui  

spoke vi), after applying Tg, there
exists a path Pc(i) in Cn(1, s) of length equals to d − 1. However, since
i ∈ Vdiam(Cn(1,s)), dc(i) = d. This is a contradiction.
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Case 1.2. Psp(u0, vi) walks only through inner edges
In this case, Psp(u0, vi) is represented by u0  

spoke v0  
c+ vs  

c+ . . . c+ vi
(or by u0  

spoke v0  
c− vn−s  

c− . . . c− vi), after applying Tg, there exists
a path Pc(i) in Cn(1, s) of length equals to d − 1. This is a contradiction
because i ∈ Vdiam(Cn(1,s)).

Case 1.3. Psp(u0, vi) walks through inner and outer edges
In this case, Psp(u0, vi) = (αa±, βc±), α ≥ 1, β ≥ 1, α + β = d, and it is
represented as follows:
u0  

a+ u1  
a+ . . .  a+ uα  

spoke vα  
c+ vα+s  

c+ . . .  c+ vi (or u0  
a−

un−1  
a− . . .  a− un−α  

spoke vn−α  
c− vn−α−s  

c− . . .  c− vi), after
applying Tg, there exists a path Pc(i) in Cn(1, s) of length d− 1. This is also
a contradiction.

Consequently, dp(u0, vi) = d + 1 and dp(u0, ui) = d. Since Pp(u0, yi),
yi ∈ wi, walks only through outer edges, after applying Tg, there exists a path
Pc(i) in Cn(1, s) walking also through outer edges such that ℓ(Pc(i)) = d.

Case 2. x0 = v0
Let P ′

p(x0, yi) be a path in GPG(n, s) of length d+ 1 represented as follows:

v0  
c+ vs  

c+ . . .  c+ vi  
spoke ui (or v0  

c− vn−s  
c− . . .  c− vi  

spoke

ui). Since ℓ(P
′

p(v0, vi)) = d, we get dp(v0, vi) ≤ ℓ(P ′

p(v0, vi)) ≤ d. However, by
Theorem 3.1, dp(v0, vi) ≥ d. Thus dp(v0, vi) = d. Moreover, ℓ(P ′

p(v0, ui)) =
d + 1. So, dp(v0, ui) ≤ ℓ(P ′

p(v0, ui)) ≤ d + 1. We proceed similarly as in
the previous case in order to prove that dp(v0, ui) = d + 1. Consequently,
dp(v0, vi) = d and dp(v0, ui) = d + 1. Since P ′

p(v0, yi), yi ∈ wi walks only
through inner edges, after applying Tg, there exists a path P ′

c(i) in Cn(1, s)
walking only through inner edges such that ℓ(P ′

c(i)) = d.

Let i ∈ Vdiam(Cn(1,s)). Suppose that there exists a path Pc(i) walking
only through outer edges such that ℓ(Pc(i)) = diam(Cn(1, s)), as well as
another path P ′

c(i) walking only through inner edges such that ℓ(P ′

c(i)) =
diam(Cn(1, s)). Next, we prove that diam(GPG(n, s)) = diam(Cn(1, s)) +
1 = d+ 1. Let x0, yi ∈ V (GPG(n, s)) such that 0 ≡ w0, i ≡ wi, x0 ∈ w0 and
yi ∈ wi.

Case 1. x0 = u0

Since there exists a path Pc(i) walking only through outer edges such that
ℓ(Pc(i)) = d, after applying Tc, there exists a path Pp(x0, yi) in GPG(n, s)
represented as follows. u0  

a+ u1  
a+ . . .  a+ ui  

spoke vi (or u0  
a−

un−1  
a− . . .  a− ui  

spoke vi). We have ℓ(Pp(u0, vi)) = d + 1 and
ℓ(Pp(u0, ui)) = d. Thus dp(u0, yi) ≤ ℓ(Pp(u0, yi)) ≤ d+ 1 for all yi ∈ wi.

Case 2. x0 = v0
Similarly, because there exists a path P ′

c(i) walking only through inner edges
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such that ℓ(P ′

c(i)) = d, after applying Tc, there exists a path P ′

p(x0, yi) in

GPG(n, s) represented as follows. v0  
c+ vs  

c+ . . .  c+ vi  
spoke ui (or

v0  
c− vn−s  

c− . . .  c− vi  
spoke ui). We have ℓ(P ′

p(v0, vi)) = d and
ℓ(P ′

p(v0, ui)) = d+ 1. Thus, dp(v0, yi) ≤ ℓ(P ′

p(v0, yi)) ≤ d+ 1 for all yi ∈ wi.
Therefore, dp(x0, yi) ≤ d+ 1 for all x0, yi ∈ V (GPG(n, s)). Thus

diam(GPG(n, s)) ≤ d+1. Furthermore, by [8], we have diam(GPG(n, s)) ≥
d+ 1. Consequently, diam(GPG(n, s)) = d+ 1.

Theorem 3.3. Let n ≥ 8 and 2 ≤ s ≤ ⌊n−1
2
⌋ and let Vdiam(Cn(1,s)) = {i ∈

V (Cn(1, s)) : dc(i) = diam(Cn(1, s))}. If

• there exists i ∈ Vdiam(Cn(1,s)) such that the shortest path between 0 and
i walks either through outer edges or through inner edges;

• or for all i ∈ Vdiam(Cn(1,s)), the shortest path between 0 and i walks
through inner and outer edges;

• or there exists i ∈ Vdiam(Cn(1,s)) such that s ≤ i ≤ n− s,

then diam(GPG(n, s)) = diam(Cn(1, s)) + 2.

Proof. Assume that diam(Cn(1, s)) = d. By [8], d+1 ≤ diam(GPG(n, s)) ≤
d + 2. If diam(GPG(n, s)) = d + 1, then by Theorem 3.2, for all i ∈
Vdiam(Cn(1,s)) there exists two paths Pc(i) and P ′

c(i) walking respectively through
outer and inner edges such that ℓ(Pc(i)) = ℓ(P ′

c(i)) = d. This contradicts the
theorem’s first two conditions. Thus diam(GPG(n, s)) = d+ 2.

When a vertex i ∈ Vdiam(Cn(1,s)) is located between s and n − s, it is
preferable to take a path containing the inner edges than choose a path
walking only through outer edges. Thus, for all i ∈ Vdiam(Cn(1,s)) such that
s ≤ i ≤ n − s, the shortest path between 0 and i in Cn(1, s) will not walk
only by outer edges. Therefore, by Theorem 3.2, diam(GPG(n, s)) 6= d+ 1.
Consequently, by [8], diam(GPG(n, s)) = d+ 2.

Conjecture 3.4. For all n and s,

diam(GPG(n, s)) =

{

diam(Cn(1, s)) + 1 if n = 4p and s = 2p− 1, p > 2,

diam(Cn(1, s)) + 2 otherwise.

4 Algorithm for the diameter of generalized

Petersen graphs

In [9], Zerovnik and Pisanski proposed a method for computing the diameter
of circulant graphs Cn(s1, s2) with a running time of O(log n). In particular,
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there is an algorithm that computes the diameter of a circulant network
Cn(1, s) in O(log n) time. This algorithmic contribution does not give an
exact value for the diameter of circulant graphs. As diam(GPG(n, s)) =
diam(Cn(1, s)) + ε, ε ∈ {1, 2}, we get the following result;

Theorem 4.1. There is an algorithm that computes the diameter of GPG(n, s)
with running time O(log n).
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