International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1377–1387

On the 2-normed Orlicz space

Muh Nur¹, Al Azhary Masta², Mawardi Bahri¹, Firman¹, Anna Islamiyati³

¹Department of Mathematics Faculty of Mathematics and Natural Science Hasanuddin University Makassar, Indonesia

²Department of Mathematics Education Faculty of Mathematics and Science Education Universitas Pendidikan Indonesia Bandung, Indonesia

³Department of Statistics Faculty of Mathematics and Natural Science Hasanuddin University Makassar, Indonesia

email: muhammadnur@unhas.ac.id

(Received April 22, 2024, Accepted May 30, 2024, Published June 1, 2024)

Abstract

We study the Orlicz space $L_{\Phi}(X)$ that is equipped with a 2-norm. This can be viewed as a generalization of the usual norm in the Orlicz space $L_{\Phi}(X)$. Using a derived norm that is obtained from the 2-norm, we show that $L_{\Phi}(X)$ is complete with respect to the 2-norm.

Key words and phrases: Orlicz space, 2-norm, complete. AMS (MOS) Subject Classifications: 46B20, 46E30, 46B25. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

1 Introduction

The theory of 2-normed spaces was initially introduced by Gähler [1] in the mid 1960's and its generalization can be found in [2, 3, 4]. Since then, many researchers have studied the structures of these spaces. Recent results can be found, for example, in [5, 6, 7, 9, 8]. In 2013, Idris et al. [10] studied the 2-normed spaces on the space of p-summable sequences. Ekariani et al. [5] also studied the 2-normed space of p-integrable functions on the Lebesgue spaces. Before we present our main results, here are some basic concepts of the 2-normed spaces.

Let X be a real vector space of dimension d where $2 \le d < \infty$. A 2-norm is a mapping $\|\cdot, \cdot\| : X \times X \to \mathbb{R}$ which satisfies the following four conditions:

- 1. ||x, y|| = 0 if and only if x, y are linearly dependent;
- 2. ||x, y|| = ||y, x|| for every $x, y \in X$;
- 3. $\|\alpha x, y\| = |\alpha| \|x, y\|$ for every $x, y \in X$ and for every $\alpha \in \mathbb{R}$;
- 4. $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$.

The pair $(X, \|\cdot, \cdot\|)$ is called a 2-normed space. Using this definition, we have $\|x, y\| \ge 0$ and $\|x, y\| = \|x, y + \alpha x\|$ for any $x, y \in X$ and $\alpha \in \mathbb{R}$. A sequence $\{x_n\}$ in the 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be *convergent* to an x in X if $\lim_{n\to\infty} \|x_n - x, y\| = 0$ for any $y \in X$. A sequence $\{x_n\}$ is said to be a *Cauchy* sequence in X if for any $y \in X$ and $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $\|x_n - x_m, y\| < \epsilon$ for any $n, m \ge n_0$. If every Cauchy sequence converges to an x in X, then X is said to be *complete*. Any complete 2-normed space is said to be a 2-Banach space.

Let $\Phi : [0, \infty) \to [0, \infty)$ be a Young function (that is, Φ is convex, leftcontinuous, $\Phi(0) = 0$, and $\lim_{t\to\infty} \Phi(t) = \infty$). The Orlicz space $L_{\Phi}(X)$ is defined as the set of measurable functions $f : X \to \mathbb{R}$ such that $\int_X \Phi(a|f(x)|) dx < \infty$ for some a > 0. The Orlicz space $L_{\Phi}(X)$ is a Banach space with respect to the usual norm:

$$\|f\|_{L_{\Phi}} := \inf\left\{b > 0 : \int_{X} \Phi\left(\frac{|f(x)|}{b}\right) dx \le 1\right\}$$

(see [11, 12, 13]). Note that, if if $\Phi(t) := t^p$ for some $p \ge 1$, then $L_{\Phi}(X) = L_p(X)$, the Lebesgue space of *p*-th integrable functions on *X*. Thus, the Orlicz space $L_{\Phi}(X)$ can be viewed as a generalization of the Lebesgue space $L^p(X)$.

In this paper, we introduce the Orlicz space $L_{\Phi}(X)$ equipped with the 2norm, which can be regarded as a generalization of the usual norm. Moreover, we define a norm that is obtained from the 2-norm and show that $L_{\Phi}(X)$ is a 2-Banach space with respect to its 2-norm.

2 Main results

2.1 $L_{\Phi}(X)$ as a 2-normed space

Let $L_{\Phi}(X)$ be the Orlicz space where $\Phi : [0, \infty) \to [0, \infty)$ is the Young function and X is a measure space with at least n disjoint subsets of positive measure. We define the mapping $\|\cdot, \cdot\|_{L_{\Phi}(X)}$ on $L_{\Phi}(X) \times L_{\Phi}(X)$ by

$$\left\|f,g\right\|_{L_{\Phi}} := \inf\left\{b > 0: \frac{1}{2} \int\limits_{X} \int\limits_{X} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array}\right) \right| \right) dx_1 dx_2 \le 1\right\}.$$

Next, we will show that the mapping in (2.1) defines a 2-norm on $L_{\Phi}(X)$. To do so, we use the following lemmas:

Lemma 2.1. If $0 \le ||f,g||_{L_{\Phi}} < \infty$, then

$$\frac{1}{2} \int\limits_{X} \int\limits_{X} \Phi\left(\frac{1}{\|f,g\|_{L_{\Phi}}} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array}\right) \right| \right) dx_1 dx_2 \le 1.$$

Proof. Suppose that

$$\|f,g\|_{L_{\Phi}} = \inf\left\{b > 0: \frac{1}{2} \int\limits_{X} \int\limits_{X} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array}\right) \right| \right) dx_1 dx_2 \le 1\right\}.$$

Then $||f,g||_{L_{\Phi}} = \inf B$. For any $\epsilon > 0$, there exists $b_{\epsilon} \in B$ such that $||f,g||_{L_{\Phi}} \leq b_{\epsilon} \leq ||f,g||_{L_{\Phi}} + \epsilon$. As a consequence, we have

$$\frac{\left|\det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix}\right|}{\|f,g\|_{L_{\Phi}} + \epsilon} \le \frac{\left|\det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix}\right|}{b_{\epsilon}}$$

for every $x_1, x_2 \in X$. By using the properties of the Young function, we have $\frac{1}{2} \int_X \int_X \Phi\left(\frac{1}{\|f,g\|_{L_{\Phi}}+\epsilon} \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) dx_1 dx_2 \leq 1.$

Since $\epsilon > 0$ is arbitrary, we have

$$\frac{1}{2} \int\limits_{X} \int\limits_{X} \Phi\left(\frac{1}{\|f,g\|_{L_{\Phi}}} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array}\right) \right| \right) dx_1 dx_2 \le 1.$$

Lemma 2.2.
$$||f,g||_{L_{\Phi}} = 0$$
 if and only if
 $\frac{1}{2} \int_{X} \int_{X} \Phi\left(\frac{1}{\epsilon} \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) dx_1 dx_2 \leq 1$ for every $\epsilon > 0$.

Proof. (\Leftarrow) This is obvious.

 (\Rightarrow) Suppose, on the contrary, that there is $\epsilon_0 > 0$ such that

$$\frac{1}{2} \int_{X} \int_{X} \Phi\left(\frac{1}{\epsilon_0} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 > 1.$$

Next,

$$\|f,g\|_{L_{\Phi}} = \inf\left\{b > 0: \frac{1}{2} \iint_{X} \iint_{X} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} f(x_{1}) & f(x_{2}) \\ g(x_{1}) & g(x_{2}) \end{array}\right) \right| \right) dx_{1} dx_{2} \le 1\right\}.$$

Hence, $||f,g||_{L_{\Phi}} = \inf B$. Taking an arbitrary $b \in B$, we have $\epsilon_0 \neq b$. We consider two cases.

Case I: $\epsilon_0 > b$. By using the properties of the Young function, we obtain

$$\frac{1}{2} \int_{X} \int_{X} \Phi\left(\frac{1}{\epsilon_{0}} \left| \det\left(\begin{array}{cc} f(x_{1}) & f(x_{2}) \\ g(x_{1}) & g(x_{2}) \end{array}\right) \right| \right) dx_{1} dx_{2}$$

$$\leq \frac{1}{2} \int_{X} \int_{X} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} f(x_{1}) & f(x_{2}) \\ g(x_{1}) & g(x_{2}) \end{array}\right) \right| \right) dx_{1} dx_{2} \leq 1.$$

Case II: $b > \epsilon_0$. This implies that $||f,g||_{L_{\Phi}} > \epsilon_0 > 0$. Hence, we obtain a contradiction in both cases.

Lemma 2.3. $\|f,g\|_{L_{\Phi}} = 0$ if and only if for every $\alpha > 0$

$$\frac{1}{2} \int_{X} \int_{X} \Phi\left(\alpha \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 = 0.$$

On the 2-normed Orlicz space

Proof. For every $0 < \epsilon < 1$ and $\alpha > 0$, we obtain

$$\Phi\left(\alpha \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) = \Phi\left((1-\epsilon)0 + \epsilon \left(\frac{\alpha}{\epsilon} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) \right)$$
$$\leq \epsilon \Phi\left(\frac{\alpha}{\epsilon} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right).$$

By Lemma 2.2, we have $\frac{1}{2} \int_{X} \int_{X} \Phi\left(\alpha \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) dx_1 dx_2 \leq \epsilon$. Since $0 < \epsilon < 1$ is arbitrary, we conclude that

$$\frac{1}{2} \int_{X} \int_{X} \Phi\left(\alpha \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 = 0$$

for every $\alpha > 0$. Conversely, suppose that for every $\alpha > 0$

$$\frac{1}{2} \int_{X} \int_{X} \Phi\left(\alpha \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 = 0.$$

 $\begin{array}{l} \text{Then } \frac{1}{\alpha} \in \left\{ b > 0 : \frac{1}{2} \int\limits_{X} \int\limits_{X} \Phi\left(\frac{1}{b} \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 \leq 1 \right\}. \text{ Hence,} \\ \|f,g\|_{L_{\Phi}(X)} \leq \frac{1}{\alpha}. \text{ Since } \alpha > 0 \text{ is arbitrary, we have } \|f,g\|_{L_{\Phi}} = 0. \end{array}$

Finally, we have a 2-norm on L_{Φ} in the following theorem.

Theorem 2.4. The mapping (2.1) defines a 2-norm on $L_{\Phi}(X)$

Proof. We need to check that $\|\cdot, \cdot\|_{L_{\Phi}}$ satisfies the four properties of a 2-norm. (1) Suppose that $\|f, g\|_{L_{\Phi}} = 0$. By Lemma 2.3, we obtain

$$\int_{X} \int_{X} \Phi\left(\alpha \left| \det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array} \right) \right| \right) dx_1 dx_2 = 0$$

for every $\alpha > 0$. Since $\Phi\left(\alpha \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) \ge 0$, we conclude that $\Phi\left(\alpha \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) = 0$. As a consequence, we have $\det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} = 0$. Hence, f and g are linear dependent. Conversely, suppose f = kg for some $k \in \mathbb{R}$. Observe that

$$\det \left(\begin{array}{cc} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{array}\right) = 0.$$

Nur et al.

Then
$$||f,g||_{L_{\Phi}} =$$

$$\inf \left\{ b > 0 : \frac{1}{2} \int_{X} \int_{X} \Phi\left(\frac{1}{b} \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right| \right) dx_1 dx_2 \le 1 \right\}$$

$$= \inf \left\{ b > 0 : \frac{1}{2} \int_{X} \int_{X} \Phi(0) dx_1 dx_2 \le 1 \right\} = \inf \left\{ b > 0 \right\} = 0.$$

(2) By properties of the determinant, we have $\|f,g\|_{L_{\Phi}} = \|g,f\|_{L_{\Phi}}$.

(3) Again, by properties of the determinant, we have $\|\alpha f, g\|_{L_{\Phi}} = |\alpha| \|f, g\|_{L_{\Phi}}$.

(4) Suppose that
$$||f, g + h||_{L_{\Phi}} =$$

$$\inf\left\{b > 0: \frac{1}{2} \iint_{X} \iint_{X} \Phi\left(\frac{1}{b} \left| \det\left(\begin{array}{cc} f(x_{1}) & f(x_{2}) \\ g(x_{1}) + h(x_{1}) & g(x_{2}) + h(x_{2}) \end{array}\right) \right| \right) dx_{1} dx_{2} \le 1\right\}$$

Choose $b=\|f,g\|_{L_\Phi}+\|f,h\|_{L_\Phi}$. Using the properties of determinants and Lemma 2.1, we obtain

$$\begin{split} \frac{1}{2} & \int_{X} \int_{X} \Phi\left(\frac{\left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) + h(x_1) & g(x_2) + h(x_2) \end{pmatrix} \right|}{\|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}} \right) dx_1 dx_2 \\ & \leq \frac{\|f, g\|_{L_{\Phi}}}{\|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}} \int_{X} \int_{X} \Phi\left(\frac{\left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right|}{2 \|f, g\|_{L_{\Phi}}} \right) dx_1 dx_2 \\ & + \frac{\|f, h\|_{L_{\Phi}}}{\|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}} \int_{X} \int_{X} \Phi\left(\frac{\left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ h(x_1) & h(x_2) \end{pmatrix} \right|}{2 \|f, h\|_{L_{\Phi}}} \right) dx_1 dx_2 \\ & \leq \frac{\|f, g\|_{L_{\Phi}}}{\|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}} + \frac{\|f, \|_{L_{\Phi}}}{\|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}} = 1. \end{split}$$
Hence, $\|f, g + h\|_{L_{\Phi}} \leq b = \|f, g\|_{L_{\Phi}} + \|f, h\|_{L_{\Phi}}. \end{split}$

The following theorem shows the connection between $L_{\Phi}(X)$ equipped with $\|\cdot,\cdot\|_{L_{\Phi}}$ and $L_p(X)$ equipped with $\|\cdot,\cdot\|_{L_p}$.

1382

On the 2-normed Orlicz space

Theorem 2.5. If $\Phi(t) = t^p$ for $1 \le p < \infty$, then $||f,g||_{L_{\Phi}} = ||f,g||_{L_p}$.

Proof. Suppose that $\Phi(t) = t^p$ for $1 \le p < \infty$. Observe that

$$\|f,g\|_{L_{\Phi}} = \inf\left\{b > 0: \frac{1}{2} \int_{X} \int_{X} \frac{1}{b^{p}} \left|\det\left(\begin{array}{cc}f(x_{1}) & f(x_{2})\\g(x_{1}) & g(x_{2})\end{array}\right)\right|^{p} dx_{1} dx_{2} \le 1\right\}$$
$$= \inf\left\{b > 0: \frac{1}{2} \int_{X} \int_{X} \left|\det\left(\begin{array}{cc}f(x_{1}) & f(x_{2})\\g(x_{1}) & g(x_{2})\end{array}\right)\right|^{p} dx_{1} dx_{2} \le b^{p}\right\} = \inf A$$

Since $||f,g||_{L_p}^p = \frac{1}{2} \int_{X} \int_{X} \left| \det \begin{pmatrix} f(x_1) & f(x_2) \\ g(x_1) & g(x_2) \end{pmatrix} \right|^p dx_1 dx_2$, we have $||f,g||_{L_p} \leq b$ for every $b \in A$. Consequently, $||f,g||_{L_p}$ is lower bound A. Hence, $||f,g||_{L_p} \leq ||f,g||_{L_p}$. Conversely, choosing $b = ||f,g||_{L_p}$, we have

$$\frac{1}{2} \int_{X} \int_{X} \frac{1}{\|f,g\|_{L_{p}}^{p}} \left| \det \begin{pmatrix} f(x_{1}) & f(x_{2}) \\ g(x_{1}) & g(x_{2}) \end{pmatrix} \right|^{p} dx_{1} dx_{2}$$

$$= \frac{1}{\|f,g\|_{L_{p}}^{p}} \left(\frac{1}{2} \int_{X} \int_{X} \left| \det \begin{pmatrix} f(x_{1}) & f(x_{2}) \\ g(x_{1}) & g(x_{2}) \end{pmatrix} \right|^{p} dx_{1} dx_{2} \right) = 1.$$

Hence, $b = ||f,g||_{L_p} \in A$. Since $\inf A = ||f,g||_{L_{\Phi}}$, we have $||f,g||_{L_p} \ge ||f,g||_{L_{\Phi}}$. Therefore, $||f,g||_{L_p} = ||f,g||_{L_{\Phi}}$.

This fact shows that Orlicz spaces equipped a 2-norm can be viewed as generalizations of Lebesgue spaces in 2-normed spaces.

2.2 $L_{\Phi}(X)$ as a 2-Banach space

We know that $L_{\Phi}(X)$ is a Banach space with respect to its usual norm $\|\cdot\|_{L_{\Phi}}$ [12]. Our aim now is to show that $L_{\Phi}(X)$ is a 2-Banach space with respect to its 2-norm $\|\cdot, \cdot\|_{L_{p}}$. To do so, we need the following lemmas:

Lemma 2.6. If $f, g \in L_{\Phi}(X)$, then

$$\Phi(|f(x)||g(x)|) \le C\Phi(|f(x)|)\Phi(|g(x)|).$$

for some C > 0.

Proof. The proof is by contradiction. If there are no C > 0 such that

$$\Phi(|f(x)| |g(x)|) \le C\Phi(|f(x)|)\Phi(|g(x)|),$$

then $\Phi(|f(x)||g(x)|) > n\Phi(|f(x)|)\Phi(|g(x)|)$ for all $n \in \mathbb{N}$. That is, $\frac{\Phi(|f(x)||g(x)|)}{n} > \Phi(|f(x)|)\Phi(|g(x)|)$ for all $n \in \mathbb{N}$. Letting $n \to \infty$, $\frac{\Phi(|f(x)||g(x)|)}{n} \to 0$. So, $\Phi(|f(x)|)\Phi(|g(x)|) < 0$. This contradicts $\Phi(|f(x)|)\Phi(|g(x)|) \ge 0$ for any $x \in X$. Hence $\Phi(|f(x)||g(x)|) \le C\Phi(|f(x)|)\Phi(|g(x)|)$ for $x \in X$ and some C > 0.

By using the above lemma, we have

$$\Phi\left(\frac{|f(x_1)||g(x_2)|}{\|f\|_{L_{\Phi}}\|g\|_{L_{\Phi}}}\right) \leq C_1 \Phi\left(\frac{|f(x_1)|}{\|f\|_{L_{\Phi}}}\right) \Phi\left(\frac{|g(x_2)|}{\|g\|_{L_{\Phi}}}\right),$$

$$\Phi\left(\frac{|f(x_2)||g(x_1)|}{\|f\|_{L_{\Phi}}\|g\|_{L_{\Phi}(X)}}\right) \leq C_2 \Phi\left(\frac{|f(x_2)|}{\|f\|_{L_{\Phi}}}\right) \Phi\left(\frac{|g(x_1)|}{\|g\|_{L_{\Phi}}}\right).$$

for some $C_1 > 0$ and $C_2 > 0$. As a consequence, we have the following lemma:

Lemma 2.7. $||f,g||_{L_{\Phi}} \leq \frac{\max(C_1,C_2)}{2} ||f||_{L_{\Phi}} ||g||_{L_{\Phi}}.$

Moreover, we have the following theorem:

Theorem 2.8. If a sequence $\{f_n\} \in L_{\Phi}(X)$ converges to an f with respect to the norm $\|\cdot\|_{L_{\Phi}}$, then $\{f_n\}$ also converges with respect to the norm $\|\cdot, \cdot\|_{L_{\Phi}}$. Similarly, if $\{f_n\} \in L_{\Phi}(X)$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{L_{\Phi}}$, then $\{f_n\} \in L_{\Phi}(X)$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{L_{\Phi}}$.

Proof. Let $\{f_n\} \in L_{\Phi}(X)$ converge to an f with respect to the norm $\|\cdot\|_{L_{\Phi}}$ (*i.e.*, $\lim_{n\to\infty} \|f_n - f\|_{L_{\Phi}} = 0$). Using Lemma 2.7, we obtain

$$\lim_{n \to \infty} \|f_n - f, g\|_{L_{\Phi}} \le \lim_{n \to \infty} \max(C_1, C_2) \|f_n - f\|_{L_{\Phi}} \|g\|_{L_{\Phi}} = 0$$

for every $g \in L_{\Phi}(X)$. This shows that $\{f_n\}$ also converges to f with respect to the norm $\|\cdot, \cdot\|_{L_{\Phi}}$. The proof of the second part is similar.

Now, we can define a norm that is obtained from the the 2-norm in a certain way. Indeed, if $\{a_1, a_2\}$ is a linearly independent set in $L_{\Phi}(X)$, then

$$||f||_{L_{\Phi}}^{*} = ||f, a_{1}||_{L_{\Phi}} + ||f, a_{2}||_{L_{\Phi}}$$
(2.1)

defines a norm on $L_{\Phi}(X)$. Observe that $||f||_{L_{\Phi}}^{*}$ in (2.1) satisfies the properties of a norm. In particular, we check that if $||f||_{L_{\Phi}}^{*} = 0$, then f = 0 almost everywhere. Indeed, if $||f||_{L_{\Phi}}^{*} = 0$, then $||f, a_{1}||_{L_{\Phi}} = 0$ and $||f, a_{2}||_{L_{\Phi}} = 0$. As a consequence, $f = ka_{1}$ for some $k \in \mathbb{R}$. Substituting $f = ka_{1}$, we obtain $k ||a_{1}, a_{2}||_{L_{\Phi}} = 0$. Since $||a_{1}, a_{2}||_{L_{\Phi}} \neq 0$, k = 0. Hence, f = 0 almost everywhere.

Now, we find the relation between the Banach space with respect the derived norm $\|\cdot\|_{L_{\Phi}(X)}^*$ and the 2-Banach space with respect to the 2-norm $\|\cdot,\cdot\|_{L_{\Phi}(X)}$ as follows:

Theorem 2.9. Let $\{a_1, a_2\}$ be a basis on $L_{\Phi}(X)$. The Orlicz space $L_{\Phi}(X)$ with respect to the 2-norm $\|\cdot, \cdot\|_{L_{\Phi}}$ is a 2-Banach space if and only if $L_{\Phi}(X)$ with respect to the derived norm $\|\cdot\|_{L_{\Phi}}^*$ is a Banach space.

Proof. Assume that $L_{\Phi}(X)$ with respect to the 2-norm $\|\cdot, \cdot\|_{L_{\Phi}(X)}$ is a 2-Banach space. If $\{f_n\}$ is the arbitrary Cauchy sequence respect to the norm $\|\cdot\|_{L_{\Phi}}^*$, then $\|f_m - f_n, a_1\|_{L_{\Phi}} + \|f_m - f_n, a_2\|_{L_{\Phi}} = \|f_m - f_n\|_{L_{\Phi}}^* \to 0$ as $n, m \to \infty$. As a consequence, we obtain $\|f_m - f_n, a_1\|_{L_{\Phi}} \to 0$ and $\|f_m - f_n, a_2\|_{L_{\Phi}} \to 0$ as $n, m \to \infty$. Since $\{a_1, a_2\}$ is basis on $L_{\Phi}(X)$, for every $a \in L_{\Phi}(X)$ we have

$$\begin{aligned} \|f_m - f_n, a\|_{L_{\Phi}} &= \|f_m - f_n, \alpha_1 a_1 + \alpha_2 a_2\|_{L_{\Phi}} \\ &= |\alpha_1| \|f_m - f_n, a_1\|_{L_{\Phi}} + |\alpha_2| \|f_m - f_n, a_2\|_{L_{\Phi}} \,. \end{aligned}$$

This shows that $||f_m - f_n, a||_{L_{\Phi}} \to 0$ as $n, m \to \infty$ for every $a \in L_{\Phi}(X)$. Hence, $\{f_n\}$ is a Cauchy sequence with respect to the 2-norm. Since $L_{\Phi}(X)$ is a 2-Banach space, there exists an $f \in L_{\Phi}(X)$ such that $||f_n - f, a||_{L_{\Phi}} \to 0$ as $n \to \infty$. In particular, we obtain $||f_n - f, a_1||_{L_{\Phi}} \to 0$ and $||f_n - f, a_2||_{L_{\Phi}} \to 0$ as $n \to \infty$. Hence, $||f_n - f||_{L_{\Phi}}^* = ||f_n - f, a_1||_{L_{\Phi}} + ||f_n - f, a_2||_{L_{\Phi}} \to 0$ as $n \to \infty$. Since the Cauchy sequence $\{f_n\}$ converges to an $f \in L_{\Phi}(X)$, $L_{\Phi}(X)$ is a Banach space with respect to the norm $||\cdot||_{L_{\Phi}}^*$.

Conversely, assume that $L_{\Phi}(X)$ with respect to the norm $\|\cdot\|_{L_{\Phi}}^{*}$ is a Banach space. Let $\{f_n\}$ be a Cauchy sequences in $L_{\Phi}(X)$ with respect to the 2norm $\|\cdot,\cdot\|_{L_{\Phi}}$; that is, $\lim_{m,n\to\infty} \|f_m - f_n, a\|_{L_{\Phi}} = 0$ for every $a \in L_{\Phi}(X)$. In particular, for $a = a_1$ and $a = a_2$, we obtain $\lim_{m,n\to\infty} \|f_m - f_n, a_1\|_{L_{\Phi}} = 0$ and $\lim_{m,n\to\infty} \|f_m - f_n, a_2\|_{L_{\Phi}} = 0$. It follows that

$$\lim_{n,n\to\infty} \|f_m - f_n\|_{L_{\Phi}}^* = \lim_{m,n\to\infty} \left[\|f_m - f_n, a_1\|_{L_{\Phi}} + \|f_m - f_n, a_2\|_{L_{\Phi}} \right] = 0.$$

Hence, $\{f_n\}$ is a Cauchy sequence in $L_{\Phi}(X)$ with respect to the derived norm $\|\cdot\|_{L_{\Phi}(X)}^*$. Since $L_{\Phi}(X)$ is a Banach space with respect to the derived norm

 $\|\cdot\|_{L_{\Phi}(X)}^{*}$, there is an $f \in L_{\Phi}(X)$ such that $\lim_{n\to\infty} \|f_n - f\|_{L_{\Phi}(X)}^{*} = 0$. As a consequence, we have $\lim_{n\to\infty} \|f_n - f, a_i\|_{L_{\Phi}(X)} = 0$ for i = 1, 2. Since $\{a_1, a_2\}$ is basis on $L_{\Phi}(X)$, for every $a \in L_{\Phi}(X)$ we obtain

$$\begin{aligned} \|f_n - f, a\|_{L_{\Phi}(X)} &= \|f_n - f, \alpha_1 a_1 + \alpha_2 a_2\|_{L_{\Phi}(X)} \\ &= |\alpha_1| \|f_n - f, a_1\|_{L_{\Phi}(X)} + |\alpha_2| \|f_n - f, a_2\|_{L_{\Phi}(X)}. \end{aligned}$$

Hence, $\lim_{n\to\infty} \|f_n - f, a\|_{L_{\Phi}(X)} = 0$ for every $a \in L_{\Phi}(X)$. Since the Cauchy sequence $\{f_n\}$ converges to an $f \in L_{\Phi}(X)$, $L_{\Phi}(X)$ is a Banach space with respect to the 2-norm $\|\cdot, \cdot\|_{L_{\Phi}(X)}$.

3 Concluding Remarks

The following proposition shows the relation between the derived norm $\|\cdot\|_{L_{\Phi}(X)}^{*}$ and the usual norm $\|\cdot\|_{L_{\Phi}(X)}$ on $L_{\Phi}(X)$.

Proposition 3.1. Let $\{a_1, a_2\}$ be a linearly independent set in L_{Φ} . For every $f \in L_{\Phi}$, we have $||f||_{L_{\Phi}}^* \leq \max(C_1, C_2)(||a_1||_{L_{\Phi}} + ||a_2||_{L_{\Phi}}) ||f||_{L_{\Phi}}$.

Proof. Using Lemma 2.7, we have $||f, a_1||_{L_{\Phi}} \leq \frac{\max(C_1, C_2)}{2} ||f||_{L_{\Phi}} ||a_1||_{L_{\Phi}}$ and $||f, a_2||_{L_{\Phi}} \leq \frac{\max(C_1, C_2)}{2} ||f||_{L_{\Phi}} ||a_2||_{L_{\Phi}}$ for every $f \in L_{\Phi}(X)$. By (2.1), we have $||f||_{L_{\Phi}}^* \leq \max(C_1, C_2)(||a_1||_{L_{\Phi}} + ||a_2||_{L_{\Phi}}) ||f||_{L_{\Phi}}$.

As a result of Proposition 3.1 and Lemma 2.7, we have

Corollary 3.2. If a sequence $\{f_n\} \in L_{\Phi}(X)$ converges to an f with respect to $\|\cdot\|_{L_{\Phi}}$, then $\{f_n\}$ also converges with respect to $\|\cdot\|_{L_{\Phi}}^*$. Similarly, if $\{f_n\} \in L_{\Phi}(X)$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{L_{\Phi}}$, then $\{f_n\} \in L_{\Phi}(X)$ is a Cauchy sequence with respect to the norm $\|\cdot\|_{L_{\Phi}}^*$.

Unfortunately, up to now, we have not been able to prove that the derived norm $\|\cdot\|_{L_{\Phi}}^{*}$ and the usual norm $\|\cdot\|_{L_{\Phi}}$ on $L_{\Phi}(X)$ are equivalent. Therefore, we do not know if $L_{\Phi}(X)$ is a Banach space with respect to the derived norm $\|\cdot\|_{L_{\Phi}}^{*}$ using a linearly independent set $\{a_{1}, a_{2}\}$ in $L_{\Phi}(X)$.

Acknowledgment. The research is supported by LPPM Unhas Collaborative Fundamental Research Program 2024 No. 00309/UN4.22/PT.01.03/2024.

References

- S. Gähler, "Lineare 2-normierte räume", Math. Nachr., 28, (1964), 1– 43.
- S. Gähler, "Untersuchungen über verallgemeinerte *m*-metrische Räume. I", Math. Nachr., 40, (1969),165–189.
- [3] S. Gähler, "Untersuchungen über verallgemeinerte *m*-metrische Räume. II", Math. Nachr., 40, (1969),229–264.
- [4] S. Gähler, "Untersuchungen über verallgemeinerte *m*-metrische Räume. III", Math. Nachr., 41, (1970),23–26.
- [5] S. Ekariani, H. Gunawan, J. Lindiarni, "On the *n*-normed space of *p*integrable functions", *Math. Aeterna.*, 5, no. 1, (2015), 11–19.
- [6] H. Gunawan, "The space of p-summable sequences and its natural nnorms", Bull. Austral. Math. Soc., 64, (2001), 137–147.
- [7] M. Nur, H. Gunawan, "A note on the g-angle between subspaces of a normed space", Aequationes Math., 95, (2021), 309–318.
- [8] M. Nur, M. idris, "A new notion of inner product in a subspace of nnormed space", Journal of the Indonesian Mathematical Society, 29, no. 3, (2023), 372–381.
- [9] M. Nur, M. Bahri, A. Islamiyati, H. Batkunde, "A new semi-inner product and p_n -angle in the space of *p*-summable sequences", *Mathematics*, **11**, (2023), 3139.
- [10] M. Idris, S. Ekariani, H. Gunawan, "On the space of p-summable sequences", Mat. Vesnik, 65, no. 1, (2013), 58–63.
- [11] Ifronika, A. A. Masta, M. Nur, H. Gunawan, "Generalized Hölder's inequality in Orlicz spaces", *Proceedings of the Jangjeon Mathematical Society*, 22, no. 1, (2019), 25–34.
- [12] C. Léonard, "Orlicz spaces", preprint. [https://leonard.perso.math.cnrs.fr/papers/Leonard-Orliczaccessed on August 17, 2015.]
- [13] L. Maligranda, Orlicz Spaces and Interpolation, Departamento de Matemática, Universidade Estadual de Campinas, Brazil, (1989).