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1 Introduction

The theory of 2-normed spaces was initially introduced by Gähler [1] in the
mid 1960’s and its generalization can be found in [2, 3, 4]. Since then, many
researchers have studied the structures of these spaces. Recent results can
be found, for example, in [5, 6, 7, 9, 8]. In 2013, Idris et al. [10] studied the
2-normed spaces on the space of p-summable sequences. Ekariani et al. [5]
also studied the 2-normed space of p-integrable functions on the Lebesgue
spaces. Before we present our main results, here are some basic concepts of
the 2-normed spaces.

Let X be a real vector space of dimension d where 2 ≤ d < ∞. A 2-norm
is a mapping ‖·, ·‖ : X×X → R which satisfies the following four conditions:

1. ‖x, y‖ = 0 if and only if x, y are linearly dependent;

2. ‖x, y‖ = ‖y, x‖ for every x, y ∈ X ;

3. ‖αx, y‖ = |α| ‖x, y‖ for every x, y ∈ X and for every α ∈ R;

4. ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ for every x, y, z ∈ X .

The pair (X, ‖·, ·‖) is called a 2-normed space. Using this definition, we have
‖x, y‖ ≥ 0 and ‖x, y‖ = ‖x, y + αx‖ for any x, y ∈ X and α ∈ R. A sequence
{xn} in the 2-normed space (X, ‖·, ·‖) is said to be convergent to an x in X if
lim
n→∞

‖xn − x, y‖ = 0 for any y ∈ X . A sequence {xn} is said to be a Cauchy

sequence in X if for any y ∈ X and ǫ > 0 there exists n0 ∈ N such that
‖xn − xm, y‖ < ǫ for any n,m ≥ n0. If every Cauchy sequence converges to
an x in X, then X is said to be complete. Any complete 2-normed space is
said to be a 2-Banach space.

Let Φ : [0,∞) → [0,∞) be a Young function (that is, Φ is convex, left-
continuous, Φ(0) = 0, and lim

t→∞
Φ(t) = ∞). The Orlicz space LΦ(X) is defined

as the set of measurable functions f : X → R such that
∫

X
Φ(a|f(x)|)dx < ∞

for some a > 0. The Orlicz space LΦ(X) is a Banach space with respect to
the usual norm:

‖f‖LΦ
:= inf

{

b > 0 :

∫

X

Φ

(

|f(x)|

b

)

dx ≤ 1

}

(see [11, 12, 13]). Note that, if if Φ(t) := tp for some p ≥ 1, then LΦ(X) =
Lp(X), the Lebesgue space of p-th integrable functions on X . Thus, the
Orlicz space LΦ(X) can be viewed as a generalization of the Lebesgue space
Lp(X).
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In this paper, we introduce the Orlicz space LΦ(X) equipped with the 2-
norm, which can be regarded as a generalization of the usual norm. Moreover,
we define a norm that is obtained from the 2-norm and show that LΦ(X) is
a 2-Banach space with respect to its 2-norm.

2 Main results

2.1 LΦ(X) as a 2-normed space

Let LΦ(X) be the Orlicz space where Φ : [0,∞) → [0,∞) is the Young
function and X is a measure space with at least n disjoint subsets of positive
measure. We define the mapping ‖·, ·‖LΦ(X) on LΦ(X)× LΦ(X) by

‖f, g‖LΦ
:= inf







b > 0 :
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1







.

Next, we will show that the mapping in (2.1) defines a 2-norm on LΦ(X).
To do so, we use the following lemmas:

Lemma 2.1. If 0 ≤ ‖f, g‖LΦ
< ∞, then

1

2

∫

X

∫

X

Φ

(

1

‖f, g‖LΦ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1.

Proof. Suppose that

‖f, g‖LΦ
= inf







b > 0 :
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1







.

Then ‖f, g‖LΦ
= inf B. For any ǫ > 0, there exists bǫ ∈ B such that

‖f, g‖LΦ
≤ bǫ ≤ ‖f, g‖LΦ

+ ǫ. As a consequence, we have

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

‖f, g‖LΦ
+ ǫ

≤

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

bǫ
.

for every x1, x2 ∈ X. By using the properties of the Young function, we have

1
2

∫

X

∫

X

Φ

(

1
‖f,g‖LΦ

+ǫ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1.
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Since ǫ > 0 is arbitrary, we have

1

2

∫

X

∫

X

Φ

(

1

‖f, g‖LΦ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1.

Lemma 2.2. ‖f, g‖LΦ
= 0 if and only if

1
2

∫

X

∫

X

Φ

(

1
ǫ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1 for every ǫ > 0.

Proof. (⇐) This is obvious.
(⇒) Suppose, on the contrary, that there is ǫ0 > 0 such that

1

2

∫

X

∫

X

Φ

(

1

ǫ0

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 > 1.

Next,

‖f, g‖LΦ
= inf







b > 0 :
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1







.

Hence, ‖f, g‖LΦ
= inf B. Taking an arbitrary b ∈ B, we have ǫ0 6= b. We

consider two cases.
Case I: ǫ0 > b. By using the properties of the Young function, we obtain

1

2

∫

X

∫

X

Φ

(

1

ǫ0

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2

≤
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1.

Case II: b > ǫ0. This implies that ‖f, g‖LΦ
> ǫ0 > 0. Hence, we obtain a

contradiction in both cases.

Lemma 2.3. ‖f, g‖LΦ
= 0 if and only if for every α > 0

1

2

∫

X

∫

X

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 = 0.
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Proof. For every 0 < ǫ < 1 and α > 0, we obtain

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

= Φ

(

(1− ǫ)0 + ǫ

(

α

ǫ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

))

≤ ǫΦ

(

α

ǫ

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

.

By Lemma 2.2, we have 1
2

∫

X

∫

X

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ǫ. Since

0 < ǫ < 1 is arbitrary, we conclude that

1

2

∫

X

∫

X

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 = 0

for every α > 0. Conversely, suppose that for every α > 0

1

2

∫

X

∫

X

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 = 0.

Then 1
α
∈

{

b> 0 :1
2

∫

X

∫

X

Φ

(

1
b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1

}

. Hence,

‖f, g‖LΦ(X) ≤
1
α
. Since α > 0 is arbitrary, we have ‖f, g‖LΦ

= 0.

Finally, we have a 2-norm on LΦ in the following theorem.

Theorem 2.4. The mapping (2.1) defines a 2-norm on LΦ(X)

Proof. We need to check that ‖·, ·‖LΦ
satisfies the four properties of a 2-norm.

(1) Suppose that ‖f, g‖LΦ
= 0. By Lemma 2.3, we obtain

∫

X

∫

X

Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 = 0

for every α > 0. Since Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

≥ 0, we conclude

that Φ

(

α

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

= 0. As a consequence, we have

det

(

f(x1) f(x2)
g(x1) g(x2)

)

= 0. Hence, f and g are linear dependent. Con-

versely, suppose f = kg for some k ∈ R. Observe that

det

(

f(x1) f(x2)
g(x1) g(x2)

)

= 0.
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Then ‖f, g‖LΦ
=

inf







b > 0 :
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1







= inf







b > 0 :
1

2

∫

X

∫

X

Φ (0) dx1dx2 ≤ 1







= inf {b > 0} = 0.

(2) By properties of the determinant, we have ‖f, g‖LΦ
= ‖g, f‖LΦ

.

(3) Again, by properties of the determinant, we have ‖αf, g‖LΦ
= |α| ‖f, g‖LΦ

.

(4) Suppose that ‖f, g + h‖LΦ
=

inf







b > 0 :
1

2

∫

X

∫

X

Φ

(

1

b

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) + h(x1) g(x2) + h(x2)

)∣

∣

∣

∣

)

dx1dx2 ≤ 1







.

Choose b = ‖f, g‖LΦ
+ ‖f, h‖LΦ

. Using the properties of determinants
and Lemma 2.1, we obtain

1

2

∫

X

∫

X

Φ









∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) + h(x1) g(x2) + h(x2)

)∣

∣

∣

∣

‖f, g‖LΦ
+ ‖f, h‖LΦ









dx1dx2

≤
‖f, g‖LΦ

‖f, g‖LΦ
+ ‖f, h‖LΦ

∫

X

∫

X

Φ









∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

2 ‖f, g‖LΦ









dx1dx2

+
‖f, h‖LΦ

‖f, g‖LΦ
+ ‖f, h‖LΦ

∫

X

∫

X

Φ









∣

∣

∣

∣

det

(

f(x1) f(x2)
h(x1) h(x2)

)∣

∣

∣

∣

2 ‖f, h‖LΦ









dx1dx2

≤
‖f, g‖LΦ

‖f, g‖LΦ
+ ‖f, h‖LΦ

+
‖f, ‖LΦ

‖f, g‖LΦ
+ ‖f, h‖LΦ

= 1.

Hence, ‖f, g + h‖LΦ
≤ b = ‖f, g‖LΦ

+ ‖f, h‖LΦ
.

The following theorem shows the connection between LΦ(X) equipped with
‖·, ·‖LΦ

and Lp(X) equipped with ‖·, ·‖Lp
.
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Theorem 2.5. If Φ(t) = tp for 1 ≤ p < ∞, then ‖f, g‖LΦ
= ‖f, g‖Lp

.

Proof. Suppose that Φ(t) = tp for 1 ≤ p < ∞. Observe that

‖f, g‖LΦ
= inf







b > 0 :
1

2

∫

X

∫

X

1

bp

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

p

dx1dx2 ≤ 1







= inf







b > 0 :
1

2

∫

X

∫

X

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

p

dx1dx2 ≤ bp







= inf A.

Since ‖f, g‖pLp
= 1

2

∫

X

∫

X

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

p

dx1dx2, we have ‖f, g‖Lp
≤ b

for every b ∈ A. Consequently, ‖f, g‖Lp
is lower bound A. Hence, ‖f, g‖Lp

≤

‖f, g‖LΦ
. Conversely, choosing b = ‖f, g‖Lp

, we have

1

2

∫

X

∫

X

1

‖f, g‖pLp

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

p

dx1dx2

=
1

‖f, g‖pLp





1

2

∫

X

∫

X

∣

∣

∣

∣

det

(

f(x1) f(x2)
g(x1) g(x2)

)∣

∣

∣

∣

p

dx1dx2



 = 1.

Hence, b = ‖f, g‖Lp
∈ A. Since inf A = ‖f, g‖LΦ

, we have ‖f, g‖Lp
≥

‖f, g‖LΦ
. Therefore, ‖f, g‖Lp

= ‖f, g‖LΦ
.

This fact shows that Orlicz spaces equipped a 2-norm can be viewed as
generalizations of Lebesgue spaces in 2-normed spaces.

2.2 LΦ(X) as a 2-Banach space

We know that LΦ(X) is a Banach space with respect to its usual norm ‖·‖LΦ

[12]. Our aim now is to show that LΦ(X) is a 2-Banach space with respect
to its 2-norm ‖·, ·‖Lp

. To do so, we need the following lemmas:

Lemma 2.6. If f, g ∈ LΦ(X), then

Φ(|f(x)| |g(x)|) ≤ CΦ(|f(x)|)Φ(|g(x)|),

for some C > 0.
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Proof. The proof is by contradiction. If there are no C > 0 such that

Φ(|f(x)| |g(x)|) ≤ CΦ(|f(x)|)Φ(|g(x)|),

then Φ(|f(x)| |g(x)|) > nΦ(|f(x)|)Φ(|g(x)|) for all n ∈ N. That is , Φ(|f(x)||g(x)|)
n

>

Φ(|f(x)|)Φ(|g(x)|) for all n ∈ N.. Letting n → ∞,
Φ(|f(x)||g(x)|)

n
→ 0. So,

Φ(|f(x)|)Φ(|g(x)|) < 0. This contradicts Φ(|f(x)|)Φ(|g(x)|) ≥ 0 for any
x ∈ X . Hence Φ(|f(x)| |g(x)|) ≤ CΦ(|f(x)|)Φ(|g(x)|) for x ∈ X and some
C > 0.

By using the above lemma, we have

Φ

(

|f(x1)| |g(x2)|

‖f‖LΦ
‖g‖LΦ

)

≤ C1Φ

(

|f(x1)|

‖f‖LΦ

)

Φ

(

|g(x2)|

‖g‖LΦ

)

,

Φ

(

|f(x2)| |g(x1)|

‖f‖LΦ
‖g‖LΦ(X)

)

≤ C2Φ

(

|f(x2)|

‖f‖LΦ

)

Φ

(

|g(x1)|

‖g‖LΦ

)

for some C1 > 0 and C2 > 0. As a consequence, we have the following lemma:

Lemma 2.7. ‖f, g‖LΦ
≤ max(C1,C2)

2
‖f‖LΦ

‖g‖LΦ
.

Moreover, we have the following theorem:

Theorem 2.8. If a sequence {fn} ∈ LΦ(X) converges to an f with respect
to the norm ‖·‖LΦ

, then {fn} also converges with respect to the norm ‖·, ·‖LΦ
.

Similarly, if {fn} ∈ LΦ(X) is a Cauchy sequence with respect to the norm
‖·‖LΦ

, then {fn} ∈ LΦ(X) is a Cauchy sequence with respect to the norm
‖·, ·‖LΦ

.

Proof. Let {fn} ∈ LΦ(X) converge to an f with respect to the norm ‖·‖LΦ

(i.e., limn→∞ ‖fn − f‖LΦ
= 0). Using Lemma 2.7, we obtain

lim
n→∞

‖fn − f, g‖LΦ
≤ lim

n→∞
max(C1, C2) ‖fn − f‖LΦ

‖g‖LΦ
= 0

for every g ∈ LΦ(X). This shows that {fn} also converges to f with respect
to the norm ‖·, ·‖LΦ

. The proof of the second part is similar.

Now, we can define a norm that is obtained from the the 2-norm in a certain
way. Indeed, if {a1, a2} is a linearly independent set in LΦ(X), then

‖f‖∗LΦ
= ‖f, a1‖LΦ

+ ‖f, a2‖LΦ
(2.1)
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defines a norm on LΦ(X). Observe that ‖f‖∗LΦ
in (2.1) satisfies the properties

of a norm. In particular, we check that if ‖f‖∗LΦ
= 0, then f = 0 almost

everywhere. Indeed, if ‖f‖∗LΦ
= 0, then ‖f, a1‖LΦ

= 0 and ‖f, a2‖LΦ
= 0.

As a consequence, f = ka1 for some k ∈ R. Substituting f = ka1, we
obtain k ‖a1, a2‖LΦ

= 0. Since ‖a1, a2‖LΦ
6= 0, k = 0. Hence, f = 0 almost

everywhere.
Now, we find the relation between the Banach space with respect the

derived norm ‖·‖∗LΦ(X) and the 2-Banach space with respect to the 2-norm
‖·, ·‖LΦ(X) as follows:

Theorem 2.9. Let {a1, a2} be a basis on LΦ(X). The Orlicz space LΦ(X)
with respect to the 2-norm ‖·, ·‖LΦ

is a 2-Banach space if and only if LΦ(X)
with respect to the derived norm ‖·‖∗LΦ

is a Banach space.

Proof. Assume that LΦ(X) with respect to the 2-norm ‖·, ·‖LΦ(X) is a 2-
Banach space. If {fn} is the arbitrary Cauchy sequence respect to the norm
‖·‖∗LΦ

, then ‖fm − fn, a1‖LΦ
+‖fm − fn, a2‖LΦ

= ‖fm − fn‖
∗
LΦ

→ 0 as n,m →
∞. As a consequence, we obtain ‖fm − fn, a1‖LΦ

→ 0 and ‖fm − fn, a2‖LΦ
→

0 as n,m → ∞. Since {a1, a2} is basis on LΦ(X), for every a ∈ LΦ(X) we
have

‖fm − fn, a‖LΦ
= ‖fm − fn, α1a1 + α2a2‖LΦ

= |α1| ‖fm − fn, a1‖LΦ
+ |α2| ‖fm − fn, a2‖LΦ

.

This shows that ‖fm − fn, a‖LΦ
→ 0 as n,m → ∞ for every a ∈ LΦ(X).

Hence, {fn} is a Cauchy sequence with respect to the 2-norm. Since LΦ(X) is
a 2-Banach space, there exists an f ∈ LΦ(X) such that ‖fn − f, a‖LΦ

→ 0 as
n → ∞. In particular, we obtain ‖fn − f, a1‖LΦ

→ 0 and ‖fn − f, a2‖LΦ
→ 0

as n → ∞. Hence, ‖fn − f‖∗LΦ
= ‖fn − f, a1‖LΦ

+ ‖fn − f, a2‖LΦ
→ 0 as

n → ∞. Since the Cauchy sequence {fn} converges to an f ∈ LΦ(X), LΦ(X)
is a Banach space with respect to the norm ‖·‖∗LΦ

.
Conversely, assume that LΦ(X) with respect to the norm ‖·‖∗LΦ

is a Banach
space. Let {fn} be a Cauchy sequences in LΦ(X) with respect to the 2-
norm ‖·, ·‖LΦ

; that is, limm,n→∞ ‖fm − fn, a‖LΦ
= 0 for every a ∈ LΦ(X). In

particular, for a = a1 and a = a2, we obtain limm,n→∞ ‖fm − fn, a1‖LΦ
= 0

and limm,n→∞ ‖fm − fn, a2‖LΦ
= 0. It follows that

lim
m,n→∞

‖fm − fn‖
∗
LΦ

= lim
m,n→∞

[

‖fm − fn, a1‖LΦ
+ ‖fm − fn, a2‖LΦ

]

= 0.

Hence, {fn} is a Cauchy sequence in LΦ(X) with respect to the derived norm
‖·‖∗LΦ(X). Since LΦ(X) is a Banach space with respect to the derived norm
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‖·‖∗LΦ(X), there is an f ∈ LΦ(X) such that limn→∞ ‖fn − f‖∗LΦ(X) = 0. As
a consequence, we have limn→∞ ‖fn − f, ai‖LΦ(X) = 0 for i = 1, 2. Since
{a1, a2} is basis on LΦ(X), for every a ∈ LΦ(X) we obtain

‖fn − f, a‖LΦ(X) = ‖fn − f, α1a1 + α2a2‖LΦ(X)

= |α1| ‖fn − f, a1‖LΦ(X) + |α2| ‖fn − f, a2‖LΦ(X) .

Hence, limn→∞ ‖fn − f, a‖LΦ(X) = 0 for every a ∈ LΦ(X). Since the Cauchy
sequence {fn} converges to an f ∈ LΦ(X), LΦ(X) is a Banach space with
respect to the 2-norm ‖·, ·‖LΦ(X).

3 Concluding Remarks

The following proposition shows the relation between the derived norm ‖·‖∗LΦ(X)

and the usual norm ‖·‖LΦ(X) on LΦ(X).

Proposition 3.1. Let {a1, a2} be a linearly independent set in LΦ. For every
f ∈ LΦ, we have ‖f‖∗LΦ

≤ max(C1, C2)(‖a1‖LΦ
+ ‖a2‖LΦ

) ‖f‖LΦ
.

Proof. Using Lemma 2.7, we have ‖f, a1‖LΦ
≤ max(C1,C2)

2
‖f‖LΦ

‖a1‖LΦ
and

‖f, a2‖LΦ
≤ max(C1,C2)

2
‖f‖LΦ

‖a2‖LΦ
for every f ∈ LΦ(X). By (2.1), we have

‖f‖∗LΦ
≤ max(C1, C2)(‖a1‖LΦ

+ ‖a2‖LΦ
) ‖f‖LΦ

.

As a result of Proposition 3.1 and Lemma 2.7, we have

Corollary 3.2. If a sequence {fn} ∈ LΦ(X) converges to an f with respect
to ‖·‖LΦ

, then {fn} also converges with respect to ‖·‖∗LΦ
. Similarly, if {fn} ∈

LΦ(X) is a Cauchy sequence with respect to the norm ‖·‖LΦ
, then {fn} ∈

LΦ(X) is a Cauchy sequence with respect to the norm ‖·‖∗LΦ
.

Unfortunately, up to now, we have not been able to prove that the derived
norm ‖·‖∗LΦ

and the usual norm ‖·‖LΦ
on LΦ(X) are equivalent. Therefore,

we do not know if LΦ(X) is a Banach space with respect to the derived norm
‖·‖∗LΦ

using a linearly independent set {a1, a2} in LΦ(X).
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