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Abstract

Control charts are known to be powerful tools for monitoring the
quality of processes in many industries. For specified control charts,
the operating-characteristic (OC) curve shows the probability of fail-
ing to detect a shift of a particular size. In this paper, we investigate
the OC curves of the well-known Shewhart x̄ chart when the normal-
ity assumption is violated. The small size of shift is more sensitive to
departures from normality than the large one.
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1 Introduction

Control charts are typically used in establishing whether a process is in a
state of statistical control or not. In practice, there are two distinct phases of
control charting and each case has unique control limit specifications. Lowry
and Montgomery [1] stated that Phase I consists of using the charts for
retrospectively testing whether the process was in control when the first m

preliminary subgroups were being drawn and the sample statistics computed.
The objective is to obtain an in-control set of data to establish control limits
for future monitoring purposes. These control limits are used in Phase II to
test whether the process remains in-control when future subgroups are drawn
during the second phase. Therefore, Phase II consists of using the control
chart to detect any departures of the underlying process and relies on the
assumption that the in-control parameters are known.

The most known and commonly-used control charts are Shewhart con-
trol charts which are capable of quickly detecting shifts in the testing process
that are larger than 1.5σ [2], but they are much less likely to be effective in
Phase II because they are not very sensitive to small and moderate size pro-
cess shifts [3]. The x̄ quality control chart is a type of Shewhart control chart
that used to monitor the mean of a process based on samples taken in a given
time. The control limits are used to monitor the mean of the process going
forward. If a point is out of the control limits, it indicates that the mean
of the process is out-of-control; assignable causes may be suspected at this
point.

The performance of a control chart is an important consideration and
one of the popular measure of a control chart’s performance is the operating-
characteristic (OC) function which is a measure of how quickly a chart will
detect or react to a change in the process and can be used to compare control
charting plans. That measure also provides useful information about the
operational performance of a control chart [4].

There is often an assumption that links normality and control chart in
the development of the performance properties of x̄ control chart; that is,
that the underlying distribution of the quality characteristic is normal. In
many situations, we may have reason to doubt the validity of this assump-
tion. For example, we may know that the underlying distribution is not
normal because we have collected extensive data that indicate the normality
assumption is inappropriate. Nidsunkid et al. [5] studied the effects of vi-
olations of the multivariate normality assumption in multivariate Shewhart
and MEWMA control charts when the random vector (X) is from the mul-
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tivariate normal, multivariate t, multivariate uniform, multivariate beta and
multivariate lognormal distributions. Nidsunkid et al. [6] studied the perfor-
mance of control chart for MCUSUM control charts when the multivariate
normality assumption is violated. In addition the impact of a random vec-
tor with variables from normal and non-normal distributions on multivariate
control charts was proposed by Nidsunkid et al. [7]. The type of skewness
for a distribution, even sampling data are from finite population [8], all af-
fect the performance of control chart and control chart based on regression
adjustment [9] in different ways.

In this article, we examine the OC curve for x̄ control chart when the
quality characteristic is either a normal distribution or a non-normal one.

2 The x̄ Control Chart

Control of the process average or mean quality level is usually done
with the control chart for means, or the x̄ control chart. It is assumed that
the process to be monitored yields some quality characteristic values, Xij ,
i = 1, 2, . . ., m, j = 1, 2, . . ., n that are normally distributed with in-
control mean (µ) and standard deviation (σ), where m samples are available
each containing n observations on the quality characteristics. Typically, a
lower control limit (LCL) and an upper control limit (UCL) for the quality
characteristics are required to construct the control chart. The control limits
for the x̄ chart when values for µ and σ are given are

UCL = µ +
3√
n
σ

Center line = µ (2.1)

LCL = µ − 3√
n
σ

3 The Operating-Characteristic Function

The ability of the x̄ charts to detect shifts in process quality is described
by their operating characteristic (OC) curves. Consider the OC curve for an
x̄ control chart, the standard deviation σ is assumed known and constant. If
the mean shifts from the in-control value (µ0) to another value µ1 = µ0+kσ,
the probability of not detecting this shift on the first subsequent sample or
the β-risk is

β = P{LCL ≤ x̄ ≤ UCL|µ = µ1 = µ0 + kσ}. (3.2)
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To construct the OC curve for the x̄ control chart, plot the β-risk against
the magnitude of the shift (k) we wish to detect expressed in standard devi-
ation units for various sample sizes n.

4 Methodology

In this article, we construct the OC curve for the x̄ control chart when
the distribution of quality characteristics (variables) are normal, t (more
heavy–tailed) and lognormal (skewed-right) distributions. The β-risk against
the magnitude of the shift (k) are plotted for various sample sizes n. The
probabilities may be evaluated directly from equation (3.2) for the case of
three-sigma limits.

5 Results

Figures 1, 2 and 3 display the OC curves for the x̄ chart with three-
sigma limits when the quality characteristics are normal, t and lognormal
distributions, respectively. If the quality characteristic is normal with small
sample sizes, the x̄ chart is not particularly effective in detecting a small
shift. For instance, the β-risk or the probability of not detecting at shifts
0.0 < k < 1.0 are around 0.9972 to 0.9821, 0.9970 to 0.9579 and 0.9969 to
0.9252 when n = 1, 2 and 3, respectively. For t quality characteristic, the
probabilities of not detecting at tiny shifts are smaller than normal quality
characteristic for all sample sizes n. In addition, the β-risk of lognormal
variables with small n are less than normal variables for small and moderate
shifts.

Table 1: The values of β(1− β) and β2(1− β) where shift is 4.0σ.

β(1− β) β2(1− β)
normal t lognormal normal t lognormal

n=1 0.1335 0.0821 0.1163 0.0212 0.0074 0.0156
n=2 0.0039 0.0223 0.0474 0.0000 0.0005 0.0024
n=3 0.0000 0.0134 0.0311 0.0000 0.0002 0.0010
n=4 0.0000 0.0100 0.0240 0.0000 0.0001 0.0006
n=5 0.0000 0.0082 0.0199 0.0000 0.0001 0.0004
n=10 0.0000 0.0049 0.0121 0.0000 0.0000 0.0001
n=15 0.0000 0.0038 0.0094 0.0000 0.0000 0.0001
n=20 0.0000 0.0032 0.0079 0.0000 0.0000 0.0001
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The probability that the shift will be detected on the first subsequent
sample is 1 − β. If the size of shift is large, the probability that the shift
is detected on the first sample will be close to 1 even though the variable
distribution is not normal. For instance, if the shift is 4.8σ and n = 2, then we
have 1−β = 1−0.001 = 0.9999, 1−0.0088 = 0.9912 and 1−0.0211 = 0.9789,
approximately for normal, t, and lognormal, respectively. Moreover, the
probability that the shift is detected on the second sample is β(1−β) whereas
the probability that it is detected on the third sample is β2(1−β). Therefore,
the probability that the process will be detected on the rth subsequent sample
is βr−1(1−β). When the size of shift is large, the β(1−β) and β2(1−β) for
non-normal distribution tend to be larger than those for normal distribution.
In Table 1, we show the pattern of β(1− β) and β2(1− β) where the shift is
4.0σ.
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Figure 1: OC curve for the x̄ chart with three-sigma limits and quality
characteristic is normal distribution
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Figure 2: OC curve for the x̄ chart with three-sigma limits and quality
characteristic is t (more heavy–tailed) distribution
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Figure 3: OC curve for the x̄ chart with three-sigma limits and quality
characteristic is lognormal (skewed-right) distribution.



The Operating-Characteristic curve... 955

6 Conclusions

The departures from normality on the control chart for x̄ obviously af-
fect the OC curve. In this paper, we indicated that for heavy-tailed and
skewed-right variable, the probabilities of not detecting small shifts are less
than normal variable for small sizes n. However, if the size of shift is larger,
then the probability that the shift is detected on the first sample will be close
to 1 for all distributions.
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