International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1281–1285

$\binom{M}{CS}$

$\mu_{mn}S_p$ -Open Sets in Bigeneralized Topological Spaces

Philip Lester P. Benjamin

Department of Mathematics and Statistics College of Science and Mathematics University of Southern Mindanao Kabacan, Cotabato, Philippines

email: plbenj@usm.edu.ph

(Received April 25, 2024, Accepted May 26, 2024, Published June 1, 2024)

Abstract

In this paper, we introduce and characterize the notion of $\mu_{mn}S_p$ -Open Sets, $\mu_{mn}S_p$ -interior, and $\mu_{mn}S_p$ -closure of a set in Bigeneralized Topological Spaces.

1 Introduction

In 2002, Császár introduced the concept of generalized topology [5]. Several counterparts of existing concepts in topology were defined including the μ -semiopen sets and μ -preopen sets.

Benjamin and Rara [4] introduced and characterizes the concepts of μS_p open sets, μS_p -closed sets, μS_p -interior and μS_p -closure of a set in the generalized topological spaces. These concepts are generalized topology's counterpart of the S_p -open sets in [7].

Boonpok [3] introduced the concept of bigeneralized topological spaces. In this paper, we introduce and characterize the notions of $\mu_{mn}S_p$ -Open Sets, $\mu_{mn}S_p$ -interior, and $\mu_{mn}S_p$ -closure of a set in Bigeneralized Topological Spaces.

Key words and phrases: $\mu_{mn}S_p$ -Open sets, $\mu_{mn}S_p$ -interior, and $\mu_{mn}S_p$ -closure, Bigeneralized Topological Spaces AMS (MOS) Subject Classifications: 54A05, 54A40, 54D40. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

Let X be a nonempty set. A subset μ of P(X) is said to be a generalized topology (briefly GT) on X if $\emptyset \in \mu$ and the arbitrary union of elements of μ belongs to μ . If μ is a GT on X, then the pair (X, μ) is called a generalized topological space (briefly GT-space), and the elements of μ are called μ -open sets. The complement of a μ -open set is called a μ -closed set.

Throughout this paper, the space (X, μ_1, μ_2) (or simply X) mean a bigeneralized topological space (BGT-space) with no separation axioms unless otherwise stated. Let A be a subset of a bigeneralized topological spaces. The closure and the interior of A with respect to μ_m are denoted by $c_{\mu_m}(A)$ and $i_{\mu_m}(A)$, respectively, with m = 1, 2.

In 2019, Fathima et. al [2] introduced the following definition: Let (X, μ_1, μ_2) be a bigeneralized topological space. Let A be a subset of X. Then A is said to μ_{mn} -semiopen if $A \subseteq c_{\mu_m}(i_{\mu_n}(A))$, where m, n = 1, 2 and $m \neq n$. The complement of a μ_{mn} -semiopen set is called a μ_{mn} -semiclosed set.

Moreover, in 2020, Rani et. al [1] introduced the notion of a μ_{mn} -preopen set as follows:

Let (X, μ_1, μ_2) be a bigeneralized topological space. Let A be a subset of X. Then A is said to μ_{mn} -preopen if $A \subseteq i_{\mu_m}(c_{\mu_n}(A))$, where m, n = 1, 2 and $m \neq n$. The complement of a μ_{mn} -preopen set is called a μ_{mn} -preclosed set.

3 $\mu_{mn}S_p$ -Open Sets in the Bigeneralized Topological spaces

In this section, we introduce the notion of $\mu_{mn}S_p$ -Open Sets in the Bigeneralized Topological spaces.

Definition 3.1. A subset A of a bigeneralized topological space X is called $\mu_{mn}S_p$ -open if A is μ_n -semiopen and for every $x \in A$, there exists a μ_m -preclosed set F_x such that $x \in F_x \subseteq A$. The complement of a $\mu_{mn}S_p$ -open set is called a $\mu_{mn}S_p$ -closed set.

Remark 3.2. Let (X, μ_m, μ_n) be a bigeneralized topological space. Then A is a $\mu_{mn}S_p$ -open set in X if and only if A is μ_n -semiopen and $A = \bigcup_{x \in A} F_x$, where F_x is a μ_m -preclosed set.

1282

Remark 3.3. The concepts of $\mu_m S_p$ -open set or $\mu_n S_p$ -open set and the $\mu_{mn} S_p$ -open sets are independent notions.

Remark 3.4. The $\mu_{12}S_p$ -open sets need not be $\mu_{21}S_p$ -open. To see this, let $X = \{a, b, c, d\}$ with generalized topologies $\mu_1 = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a, c, d\}$ is a $\mu_{21}S_p$ -open set but not $\mu_{12}S_p$ -open.

Theorem 3.5. Let (X, μ_m, μ_n) be a bigeneralized topological space. Then A is a $\mu_{mn}S_p$ -closed set in X if and only if A is μ_n -semiclosed and for every $x \notin A$, there exists a μ_m -preopen set U_x such that $A \subseteq U_x$.

Proof.

Let A be a $\mu_{mn}S_p$ -closed set in X. Then $X \setminus A$ is $\mu_{mn}S_p$ -open. By Definition 3.1, $X \setminus A$ is μ_n -semiopen and for every $x \in X \setminus A$, there exists a μ_m -preclosed set F_x such that $x \in F_x \subseteq X \setminus A$. Hence A is μ_n -semiclosed and for every $x \notin A$, there exists a μ_m -preopen set $X \setminus F_x$ such that $A \subseteq X \setminus F_x$. Take $U_x = X \setminus F_x$. Thus the necessity of the theorem follows. The sufficiency is proved similarly. This completes the proof. \Box

Definition 3.6. The union of all the $\mu_{mn}S_p$ -open sets of a BGT-space X contained in $A \subseteq X$ is called the $\mu_{mn}S_p$ -interior of A, denoted by $\mu_{mn}S_pi_{\mu_{mn}}(A)$.

Remark 3.7. For any subset A of a BGT-space X, $\mu_{mn}S_p i_{\mu_{mn}}(A) \subseteq A$.

Definition 3.8. The intersection of all the $\mu_{mn}S_p$ -closed sets of X containing A is called the $\mu_{mn}S_p$ -closure of A, denoted by $\mu_{mn}S_pc_{\mu_{mn}}(A)$.

Remark 3.9. For any subset A of a BGT-space $X, A \subseteq \mu_{mn}S_pc_{\mu_{mn}}(A)$.

4 $\mu_{mn}S_p$ -Interior and $\mu_{mn}S_p$ -Closure of a Set

In this section, we present some results involving $\mu_{mn}S_p$ -interior and $\mu_{mn}S_p$ closure of a set in the BGT-space. First, consider the following remark:

Remark 4.1. Let (X, μ_m, μ_n) be a BGT-space and $A \subseteq X$. Then (i) $\mu_{mn}S_pc_{\mu_{mn}}(A) = X \setminus \mu_{mn}S_pi_{\mu_{mn}}(X \setminus A)$; (ii) $\mu_{mn}S_pi_{\mu_{mn}}(A) = X \setminus \mu_{mn}S_pc_{\mu_{mn}}(X \setminus A)$. (iii) A is μ_{mn} -semiopen and μ_{mn} -preclosed if and only if $A = c_{\mu_m}(i_{\mu_n}(A))$. (iv) If $A = c_{\mu_{mn}}(i_{\mu_{mn}}(A))$, then A is $\mu_{mn}S_p$ -open. The converse of Remark 4.1 (iv) need not be true. Consider the same BGT-space X in Remark 3.4. Observe that the set $A = \{a, b\}$ is $\mu_{mn}S_p$ -open and $c_{\mu_{mn}}(i_{\mu_{mn}}(A)) = \{a, b, c\}$ which means $A \neq c_{\mu_{mn}}(i_{\mu_{mn}}(A))$.

Lemma 4.2. Arbitrary union of μ_{mn} -semiopen sets is μ_{mn} -semiopen.

Proof.

Let $\{M_i : i \in I\}$ be a collection of μ_{mn} -semiopen sets in a BGT-space X. Then $M_i \subseteq c_{\mu_m}(i_{\mu_n}(M_i))$ for all *i*. Thus

$$\bigcup_{i \in I} M_i \subseteq \bigcup_{i \in I} c_{\mu_m}(i_{\mu_n}(M_i))$$
$$\subseteq c_{\mu_m} \left(\bigcup_{i \in I} i_{\mu_n}(M_i) \right)$$
$$\subseteq c_{\mu_m} \left(i_{\mu_n}(\bigcup_{i \in I} M_i) \right)$$

Therefore, $\bigcup_{i \in I} M_i$ is μ_{mn} -semiopen.

Theorem 4.3. The collection of all $\mu_{mn}S_p$ -open sets in X forms a BGT on X.

Proof.

Let $C = \{M_i : M_i \text{ is } \mu S_p \text{-open}, i \in I\}$. Clearly, \emptyset is $\mu_{mn}S_p$ -open. Since M_i is $\mu_{mn}S_p$ -open for all $i \in I$, M_i is μ_{mn} -semiopen for all i. By Lemma 4.2, $\bigcup_{i \in I} M_i$ is μ_{mn} -semiopen. Let $x \in \bigcup_{i \in I} M_i$. Then $x \in M_i$ for some $i \in I$. Since M_i is $\mu_{mn}S_p$ -open, there exists a μ_m -preclosed set F_i such that $x \in F_i \subseteq M_i$. This implies that $x \in F_i \subseteq \bigcup_{i \in I} M_i$. Therefore, $\bigcup_{i \in I} M_i$ is $\mu_{mn}S_p$ -open. It follows that C forms a BGT on X.

Corollary 4.4. The intersection of all $\mu_{mn}S_p$ -closed sets is $\mu_{mn}S_p$ -closed.

Proof.

Let F_i be $\mu_{mn}S_p$ -closed sets for each $i \in I$. Then $X \setminus F_i$ is $\mu_{mn}S_p$ -open for each i. By Theorem 4.3, $\bigcup_{i \in I} (X \setminus F_i) = X \setminus (\bigcap_{i \in I} F_i)$ is $\mu_{mn}S_p$ -open. Therefore, $\bigcap_{i \in I} F_i$ is a $\mu_{mn}S_p$ -closed set.

1284

References

- R. Rani et al., Advances in Mathematics, Scientific Journal, 9, no. 5, (2020), 2459–2466.
- [2] M. Anees Fathima, R. Jamuna Rani, "μ_{ij}-semiopen sets in bigeneralized topological spaces," Malaya Journal of Mathematics, S, no. 1, (2019), 12–16.
- [3] C. Boonpok, "Weakly open functions on bigeneralized topological spaces," *International Journal of Mathematical Analysis*, 4, no. 191, (2011), 891–897.
- [4] P. L. Benjamin, H. M. Rara, "μSp-sets and μSp-functions," International Journal of Mathematical Analysis, 9, no. 11, (2015), 499–508.
- [5] A. Császár, "Generalized topology, generalized continuity," Acta Mathematica Hungarica, 96, (2002), 351–357.
- [6] A. Császár, "Extremely Disconnected Generalized Topologies," Annales Univ. Sci. Budapest, 47, (2004), 91–96.
- [7] H. A. Shareef, " S_p -open sets, S_p -continuity and S_p -compactness in topological spaces," M. Sc. Thesis, Sulaimani University, Iraq, (2007).