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Abstract

Real-world optimization problems in engineering and applied sci-
ences often involve constraints and require effective methods using
constraint-handling techniques to solve them. We propose an adaptive
differential evolution algorithm with feasibility ranking mutation and
dynamic thresholding technique (ADE-RT) for solving the constrained
optimization problems. The algorithm adaptively uses low and high
crossover rate ranges and speeds the convergence with feasibility rank-
ing mutation when all individuals are feasible. It incorporates the
dynamic thresholding technique with the threshold-decreasing rate
(TR). The ADE-RT using the suitable TR is compared with sev-
eral well-known algorithms on benchmark problems. Experimental
results show that the proposed algorithm outperforms the compared
methods.
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1 Introduction

Constrained optimization problems (COPs) aim to find solutions that satisfy
the constraints and give optimal objective function values. Solving COPs is
challenging because the solutions must be in feasible regions defined by in-
equality and equality constraints. The problems are complicated when the
objective functions are multimodal and high-dimensional, and the feasible
regions have small fractional volumes.

The well-known Deb’s feasibility rule [1] selects the preferred solutions
as follows: (i) the one with a better objective function value is preferred
between two feasible solutions, (ii) if one solution is infeasible and the other
one is feasible, the feasible solution is preferred, and (iii) the one with a lower
degree of constraint violation is preferred between two infeasible solutions.

Evolutionary algorithms (EAs) have been applied to solve COPs because
they do not require derivatives and can give global solutions. Among dif-
ferent EAs, the differential evolution algorithm (DE) [2] is a simple and
efficient population-based evolutionary method for solving continuous opti-
mization problems. The DE algorithm consists of four operations: initial-
ization, mutation, crossover, and selection. Its control parameters, scaling
factor, crossover rate, and population size affect the search performance, and
the suitable values depend on the problems. Therefore, the researchers have
proposed adaptive DE algorithms for solving general and high-complexity
problems.

We propose an adaptive differential evolution with feasibility ranking mu-
tation and dynamic thresholding technique called ADE-RT. The algorithm
adaptively uses low and high crossover rates to balance the local and global
search and suit the problem being solved. The feasibility ranking mutation
strategy ranks feasible individuals using their objective function values and
positions the base vector in a mutation equation to speed up the conver-
gence performance of the method. The algorithm incorporates the dynamic
thresholding technique to handle equality constraints.

2 Literature review

Many researchers have proposed population-based methods using the im-
provements of the preference rule approach to handle the constraints of COPs
and enhancement techniques to make search processes efficient. XU et al.
[3] proposed the DE with the cooperative ranking-based mutation strategy
(CRM) that sorts feasible individuals with objective function values and in-
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feasible individuals with the degree of constraint violations. The algorithm
calculates the probability from the ranking fractions to select the random vec-
tors in the mutation. It selects the preferred solution with Deb’s feasibility
rule. The results show that the DE variants using the CRM strategy converge
faster than the non-CRM-based ones on CEC2006, CEC2010, and CEC2011.
Takahama and Sakai [4] proposed ε-constrained differential evolution (εDE)
that relaxes the constraints to the ε level values. The algorithm uses the
gradient-based mutation to adjust the trial vectors to equality constraints.
The εDE can find feasible and optimal solutions for 22 out of 24 problems
on CEC2006. Mohamed [5] introduced an enhanced DE, called NDE, with
a thresholding technique that transforms equality constraints into inequal-
ity constraints. The algorithm uses a triangular mutation defined by the
best, better, and worst individuals among random vectors to generate the
mutant vector. The NDE can solve 21 out of 24 problems on CEC2006. It
outperforms the compared methods on constrained engineering design and
mechanical design problems regarding objective function values. Wang et
al. [6] proposed a C2oDE algorithm that composes the CoDE and the ε

constrained methods. It generates three offspring from three mutation and
crossover strategies and selects the best one using Deb’s feasibility rule as
a trial vector. The algorithm restarts all individuals when they are simi-
lar and infeasible to avoid stagnation in the infeasible region. The results
demonstrate that the C2oDE outperforms NDE on CEC2006 and CoDE on
CEC2010. Xu and Zhang [7] proposed an adaptive CETDE using a two-
level ε-constrained method that computes the first ε level and scales it with
ranking fractions as the second ε level for each individual to select preferred
solutions. The algorithm replaces target vectors with trial vectors when the
population is premature. The CETDE is superior to the DE variants using
Deb’s feasibility rule and ε-constrained method on CEC2006 and is compet-
itive to the compared methods on CEC2018 and five real-world problems.
Zhang et al. [8] proposed an adaptive εDE that controls the ε value to relax
constraints with a heuristic rule. It reduces the high ε value more quickly
than the low ε value. The results show that the algorithm converges faster
than εDE and DE-CRM on CEC2006 and outperforms the compared meth-
ods on fifteen constrained engineering optimization problems. Yi et al. [9]
proposed IεJADE that improves JADE with ε constraint process mechanism.
It decreases the ε level by an exponent function combined with the maximum
constraint violation. The algorithm selects the top-best individuals by first
considering the constraint violation values and then the objective function
values. The results show that the IεJADE is competitive with the compared
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methods on CEC2006 and CEC 2010.

3 The proposed ADE-RT algorithm

The COPs for minimization can be expressed as follows:

Minimize y = f(x)

Subject to gr(x) ≤ 0, r = 1, 2, . . . , p

hs(x) = 0, s = p + 1, . . . , m

(3.1)

where f(x), gr(x), and hs(x) are the objective function, the inequality con-
straints, and the equality constraints, respectively. A solution x = (x1, . . . , xD)
is feasible if x satisfies all constraints; otherwise, it is infeasible. Optimizing
a COP requires balancing constraint violation and objective function values.
We propose an adaptive differential evolution with feasibility ranking mu-
tation and dynamic thresholding technique (ADE-RT). The algorithm ran-
domizes the scaling factor in [0.5, 0.7] and adaptively uses the low and high
crossover rates [10]. It uses the feasibility rule incorporated with the dynamic
thresholding technique to select the preferred solutions. The technique trans-
forms equality constraints into inequality constraints with threshold value ε

and decreases the ε with the threshold-decreasing rate. When all individu-
als are feasible at ε level, the feasibility ranking mutation strategy (FRM)
ranks random vectors in the mutation equation using their objective function
values to position the base vector. The ADE-RT algorithm is described as
follows:
Step 1. Setting parameters:
Population size: NP , dimension: D, lower and upper bounds of popula-
tion vectors: LB and UB, acceptable value: δ, threshold-decreasing rate:
TR, maximum number of function evaluations: maxFEs, scaling factor: F ,
crossover rate: CR, probabilities for using low and high crossover rates: pc1
and pc2, and counters corresponding to pc1 and pc2: nc1 and nc2.
Step 2. Initialization:
2.1 Generate the initial population of random vectors xi = (xi1, xi2, . . . , xiD)
in the search range [LB,UB] for i = 1, 2, . . . , NP and calculate their objec-
tive function values f(xi), constraint violation of inequality constraint

ICVr(xi) = max{0, gr(xi)}, (3.2)

constraint violation of equality constraint

ECVs(xi, ε) = max{0, |hs(xi)| − ε}, (3.3)
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and degree of constraint violations

DCV (xi, ε) =

p
∑

r=1

ICVr(xi) +
m
∑

s=p+1

ECVs(xi, ε). (3.4)

Find the best vector xbest using the feasibility rule at the acceptable δ level
by setting ε = δ.
2.2 Set an initial threshold value ε as the maximum of all ICVr and ECVs

for all xi. Then, calculate each DCV (xi, ε).
2.3 Set pc1 = pc2 = 0.5, and nc1 = nc2 = 0.
Step 3. Mutation: For each target vector xi, random F in [0.5, 0.7], and
distinct indices r1, r2, r3 from {1, 2, . . . , NP} which are also different from i.
3.1 If there exists an individual x such that DCV (x, ε) > 0, then generate
the mutant vector vi by

vi = xr1 + F · (xr2 − xr3). (3.5)

3.2 Otherwise, generate vi using the feasibility ranking mutation

vi = x∗

r1 + F · (x∗

r2 − x∗

r3), (3.6)

where x∗

r1
has the best objective function value among xr1 , xr2 , xr3 and x∗

r2
, x∗

r3

are remaining vectors.
Step 4. Crossover: Generate a random number t in [0, 1]. If t ≤ pc1,
then random CR in the range of low crossover rates C1; otherwise, random
CR in the range of high crossover rates C2. Create the trial vector ui as
follows:

ui,j =

{

vi,j if randj ≤ CR or j = Irand
xi,j otherwise

(3.7)

where randj is random number in [0, 1] for j = 1, 2, 3, . . . , D, and Irand is a
randomly fixed integer from {1, 2, . . . , D}.
Step 5. Selection:
5.1 Calculate DCV (ui, δ), DCV (ui, ε) by eq.(3.4), and f(ui).
5.2 Replace the target vectors xi by ui if ui is more preferable at ε level than
xi; i.e., one of the following conditions is satisfied:

(i) If DCV (ui, ε) = 0 and DCV (xi, ε) = 0 and f(ui) < f(xi),
(ii) If DCV (ui, ε) = 0 and DCV (xi, ε) > 0,
(iii) IfDCV (ui, ε) > 0 andDCV (xi, ε) > 0 andDCV (ui, ε) < DCV (xi, ε).

5.3 Update xbest with ui if ui is the preferable at the acceptable δ level than
xbest.
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Step 6. Updating parameters:
6.1 Updates pc1 and pc2 as follows.
6.1.1 If a better solution ui found in the selection is generated with CR ∈ C1,
then increase nc1 := nc1 + 1; otherwise, increase nc2 := nc2 + 1.
6.1.2 If nc1 + nc2 ≥ 100, then adjust the counters nc1 := nc1 + 10 and
nc2 := nc2 + 10 to prevent both of them from 0.
6.1.3 Update the probabilities pc1 and pc2 by

pc1 = 0.9 ∗ pc1 + 0.1 ∗
( nc1

nc1 + nc2

)

and pc2 = 1.0− pc1. (3.8)

Reset the counters nc1 = nc2 = 0.
Step 7. Decreasing threshold value ε:
At the end of each generation, we reduce the ε using the thresholding-
decreasing rate (TR). If all individuals satisfy the degree of constraint vio-
lation at the ε level, then update ε value by

ε := TR ∗ ε. (3.9)

Update each DCV (xi, ε).
Step 8. Stopping condition: Repeat all the steps 3−7 until the stopping
condition is satisfied and report xbest, its objective function f(xbest), and
DCV (xbest, δ) values.

4 Experimental designs and results

We conduct a preliminary experiment to find the suitable threshold-decreasing
rate and a performance comparison experiment of ADE-RT using the suitable
TR with well-known algorithms on 22 benchmark problems from CEC2006
[11], including four different constraint types: linear inequality, nonlinear
inequality, linear equality, and nonlinear equality constraints. The control
parameters, NP = 70, F ∈ [0.5, 0.7], C1 = [0.3, 0.4], and C2 = [0.9, 1.0] are
set for the ADE-RT. Each run is a success if xbest is feasible, |hs(xbest)| ≤ δ =
10−4, and f(xbest)−f(x∗) ≤ V TR = 10−4 where x∗ is the best-known solution
from the reference [5]. We report the success rate (SR), the mean of function
evaluations (Mean), and the percentage of the standard deviation (%SD).

4.1 Suitable threshold-decreasing rate for ADE-RT

This experiment varies the threshold-decreasing rate TR = 0.5, 0.6, 0.7, 0.8,
and 0.9 to compare the performance of ADE-RT with ADE-R (without dy-
namic thresholding technique) on five equality constraint problems g03, g13,
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g17, g21, and g23 over 50 independent runs. We report SR andMean(%SD)
at maxFEs = 240000. For each problem, the SR = 100 is considered first.
Then, the least Mean value is examined. The best values are indicated in
bold. Table 1 shows that the ADE-RT using TR = 0.6, 0.7 gives the SR =
100 for all test problems, and the algorithm with TR = 0.6 overall outper-
forms the others.

Table 1: Performances of ADE-RT using different TR values and ADE-R.
ADE-RT Problem

TR g03 g13 g17 g21 g23
0.5 100 96 100 100 100

58225(33.73) 49115(37.13) 47776(11.52) 71993(6.05) 115965(10.46)
0.6 100 100 100 100 100

34649(14.59) 41489(21.66) 51111(11.80) 78394(5.16) 111790(5.26)
0.7 100 100 100 100 100

30032(6.61) 43166(16.38) 58480(3.29) 90421(4.54) 124285(4.23)
0.8 100 100 100 96 100

35266(5.28) 55509(15.36) 80748(3.56) 120742(6.01) 163993(4.36)
0.9 100 100 100 88 0

56283(4.41) 89826(7.06) 146849(2.88) 199131(4.31) -(-)
ADE-R 0 12 22 100 100

-(-) 226936(4.23) 161848(22.07) 81629(33.47) 133772(16.37)

4.2 Performance comparison of ADE-RT and

well-known algorithms

The ADE-RT using suitable TR = 0.6 is compared with well-known algo-
rithms over 50 independent runs. First, we compare the success rate of
ADE-RT with NDE [5], C2oDE [6], adaptive εDE [8], and IεJADE [9] at
maxFEs = 240000 as shown in Table 2. The symbols “0” and “1” denote
SR < 100 and SR = 100, respectively. The results show that ADE-RT and
C2oDE give SR = 100 for all cases, while NDE, adaptive εDE, and IεJADE
give SR = 100 for 21, 21, 16 cases out of 22 cases, respectively. Therefore,
ADE-RT outperforms NDE, adaptive εDE, and IεJADE and is competitive
with C2oDE.

Second, we compare the performances of ADE-RT with εDE [4], DE-
CRM [3], CETDE [7], and adaptive εDE [8] algorithms over 25 independent
runs. The SR and Mean(%SD) at maxFEs = 500000 are reported in Table
3 where the results of each compared method are from the original papers.
We use a two-tailed t-test at a significance level of 0.05 to compare their per-
formances. The symbols “+” , “≈”, and “−” denote that ADE-RT performs
significantly better than, similar to, and worse than the compared methods.
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Table 2: Performances of ADE-RT and well-known algorithms in terms of SR.
Problem NDE [5] C2oDE [6] adaptive εDE [8] IεJADE [9] ADE-RT

g01 1 1 1 1 1
g02 0 1 0 1 1
g03 1 1 1 0 1
g04 1 1 1 1 1
g05 1 1 1 1 1
g06 1 1 1 1 1
g07 1 1 1 1 1
g08 1 1 1 1 1
g09 1 1 1 1 1
g10 1 1 1 1 1
g11 1 1 1 1 1
g12 1 1 1 1 1
g13 1 1 1 1 1
g14 1 1 1 1 1
g15 1 1 1 0 1
g16 1 1 1 1 1
g17 1 1 1 0 1
g18 1 1 1 0 1
g19 1 1 1 1 1
g21 1 1 1 0 1
g23 1 1 1 0 1
g24 1 1 1 1 1

Summarize 21 22 21 16 22

The result shows that the ADE-RT and εDE algorithms give SR = 100 for
all cases, while DE-CRM, CETDE, and adaptive εDE methods give mean
SR equal to 97.45, 99.82, 99.64, respectively. For statistical comparison, the
number of cases of ADE-RT that are superior to other algorithms is 16, 14,
21, and 11 out of 22 cases, respectively. It indicates that ADE-RT outper-
forms the compared methods.

5 Discussion

The dynamic thresholding technique uses a threshold value ε to convert
equality constraints into inequality constraints. It reduces the value with
the rate TR when all individuals satisfy the feasibility rule at the current ε
level at the end of a generation. Low TR rapidly decreases the ε and leads
to a premature population, while high TR slows the convergence speed of
the ADE-RT algorithm. We obtain the suitable TR = 0.6 for this study.
The feasibility ranking mutation (FRM) generates a more potential mutant
vector when all individuals are feasible at a ε level. It exploits the base
vector with the lowest objective function value to accelerate the convergence
speed. We compare the performances of ADE-RT with and without FRM on
nine constraint problems at maxFEs = 240000 over 50 independent runs.
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Table 3: Performance comparison of ADE-RT with well-known algorithms.
Problem εDE [4] DE-CRM [3] CETDE [7] Adaptive εDE [8] ADE-RT

g01 100 (+) 100 (−) 100 (+) 100 (−) 100
59308(1.95) 23532(6.12) 102866(0.84) 48494(4.04) 53566(2.48)

g02 100(+) 72 (+) 96 (+) 92 (+) 100
149825(10.49) 226666(84.26) 120138(66.94) 90935(5.84) 93689(6.19)

g03 100 (+) 96 (+) 100 (+) 100 (−) 100
89407(1.20) 63936(142.17) 89882(1.36) 27062(10.02) 35454(21.23)

g04 100 (+) 100 (−) 100 (+) 100 (−) 100
26216(3.47) 12260(4.57) 97716(0.56) 18974(4.79) 23471(5.23)

g05 100 (+) 100 (+) 100 (+) 100 (+) 100
97431(0.41) 40374(1.22) 99014(1.91) 44078(15.27) 29924(4.68)

g06 100 (−) 100 (−) 100 (+) 100 (+) 100
7381(6.24) 5818(6.65) 103672(0.72) 13622(114.24) 8565( 5.10)

g07 100 (+) 100 (+) 100 (+) 100 (+) 100
74303(3.24) 81224(5.82) 120092(2.35) 55392(5.77) 49736(5.02)

g08 100 (−) 100 (−) 100 (+) 100 (≈) 100
1139(17.04) 978(20.96) 29398(15435) 1845(180.33) 1506(15.03)

g09 100 (+) 100 (+) 100 (+) 100 (+) 100
23121(4.98) 23696(5.02) 104290(1.06) 19464(4.39) 17797(4.26)

g10 100 (+) 100 (+) 100 (+) 100 (+) 100
105234(6.44) 95634(5.35) 148144(3.45) 82264(5.21) 61427(4.21)

g11 100 (+) 100 (+) 100 (+) 100 (+) 100
16420(40.02) 25996(14.81) 59632(19.80) 6773(12.99) 6137(16.84)

g12 100 (−) 100 (−) 100 (−) 100 (−) 100
4124(19.70) 3478(23.78) 2488(23.27) 3515(25.95) 4601(28.58)

g13 100 (−) 100 (−) 100 (+) 100 (−) 100
34738(45.94) 34012(4.65) 112548(42.90) 26953(9.62) 41933(15.09)

g14 100 (+) 100 (+) 100 (+) 100 (−) 100
113439(3.70) 76208(5.47) 110068(2.12) 64983(3.58) 72087(4.09)

g15 100 (+) 100 (+) 100 (+) 100 (+) 100
84216(8.49) 33716(5.66) 91396(2.09) 22498(14.34) 19414( 8.67)

g16 100 (≈) 100 (−) 100 (+) 100 (+) 100
12986(3.09) 9032(5.92) 101304(0.69) 20408(7.02) 13037(4.20)

g17 100 (+) 100 (+) 100 (+) 100 (−) 100
98861(0.80) 51494(8.97) 164178(18.49) 43250(4.53) 49360(2.73)

g18 100 (+) 100 (+) 100 (+) 100 (+) 100
59153(7.31) 61566(8.97) 119598(5.03) 52253(10.68) 47021( 8.65)

g19 100 (+) 100 (+) 100 (+) 100 (+) 100
356350(7.92) 145086(5.20) 143312(7.41) 144265(8.45) 132551(8.68)

g21 100 (+) 76 (+) 100 (+) 100 (−) 100
135143(12.55) 179412(103.67) 126228(11.76) 64688(4.43) 81582(16.44)

g23 100 (+) 100 (+) 100 (+) 100 (−) 100
200765(13.78) 187362(18.20) 187230(23.53) 104258(5.58) 111837(4.75)

g24 100 (≈) 100 (−) 100 (+) 100 (−) 100
2952(6.26) 2546(6.48) 71696(5.56) 2845(8.58) 3092(5.26)

Mean SR 100.00 97.45 99.82 99.64 100.00
(+,≈,−) (16, 2, 4) (14, 0, 8) (21, 0, 1) (11, 1, 10)

Table 4 shows that both algorithms can solve all problems, but ADE-RT
with FRM gives significantly lower Mean values. Therefore, the FRM also
plays a crucial role in improving convergence performance.
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Table 4: Performances of ADE algorithms with and without FRM.
Prob. ADE without FRM ADE with FRM Prob. ADE without FRM ADE with FRM

SR/Mean(%SD) SR/Mean(%SD) SR/Mean(%SD) SR/Mean(%SD)
g01 100/ 63594 (2.27) 100/ 53265 (2.14) g18 100 / 74631 (7.91) 100/ 47832(8.80)
g02 100/139212(5.48) 100/ 94695 (7.11) g19 100 / 213537(4.96) 100/130959(7.99)
g03 100/40640(19.87) 100/35357(18.76) g21 100 / 90913 (7.22) 100/82397(16.38)
g13 100/42571(24.38) 100/42479(20.71) g23 100/140908(10.03) 100/112008(6.43)
g17 100/ 53570 (4.49) 100/ 49573 (3.50)

6 Conclusion

We have presented an adaptive differential evolution algorithm with fea-
sibility ranking mutation and dynamic thresholding technique for solving
COPs. The algorithm enhances searchability by adaptively using low and
high crossover rates. It relaxes the equality constraints with the dynamic
thresholding technique using the threshold-decreasing rate and speeds up
the convergence with the feasibility ranking mutation strategy. The exper-
imental results show that our proposed algorithm can solve all CEC2006
benchmark problems and outperform the compared methods.
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