
International Journal of Mathematics and
Computer Science, 19(2024), no. 4, 1129–1135

b b

M
CS

Using New Metrics to find a good
Examination Schedule

P. Smith, P. Wang

Department of Mathematics and Statistics
St. Francis Xavier University

Antigonish, Nova Scotia, Canada B2G 2W5

email: pwang@stfx.ca

(Received March 15, 2024, Accepted April 20, 2024,
Published June 1, 2024)

Abstract

The problem of finding an optimal examination schedule is known

to be an NP-complete problem. Researchers often employ heuristics

such as simulated annealing and genetic algorithms to find good ex-

amination schedules. In this paper, we compare the three heuristic

approaches from the perspective of students.

1 Introduction

The examination scheduling problem is a very well-known combinatorial op-
timization problem. Carter [1] gave a comprehensive review of examination
timetabling methods. It is the process of assigning examinations to a par-
ticular slot in the timetable and a particular room. That is, a number of
examinations must be assigned to a fixed number of time slots subject to the
following constraints:
(i) Hard constraints – two examinations cannot be assigned in the same time
slot if one or more students must take both examinations.
(ii) Students comfort constraints – most universities try to minimize the num-
ber of students having two examinations in consecutive time slots.

Key words and phrases: Graph theory, simulation annealing, generic
algorithm.
AMS (MOS) Subject Classifications: 05Cxx.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

1130 P. Smith, P. Wang

(iii) Physical constraints – Some physical constraints such as a fixed number
of classrooms at any given time slot.
(iv) Faculty constraints – For the large size classes, it would be beneficial for
instructors to arrange their examinations early in the examination period so
that the instructors can hand in the final grades before the deadlines. At St.
Francis Xavier University (STFX), there are approximately 3500 students
and about 400 courses offered. Examinations are held over a 10-day period
with 3 time slots per day. In this paper, three different heuristic algorithms
are employed to find an optimal solution or a near optimal solution based on
two different metric.

2 Goodness Metric and three algorithms

We shall use the graph presentation to organize our data where a note of
graph is a class at STFX and two notes are joined by an edge if and only
if there is at least one student enrolled in both classes. It follows that the
scheduling problem becomes a graph colouring problem. That is, can we
colour all of notes with 30 colours?

2.1 Common metric and three approaches

In order to find an optimal schedule, a measurement on the ”Goodness”
of a particular examination schedule shall be defined. We shall use stu-
dents “discomfort”level as the weight for each student. Let i/j denote i
examinations in j days. We use the weight defined in Table 1. Then
the cost function of any particular examination schedule (S) is defined as
Total weight(S) =

∑
each studentwi. In turn, an optimal examination sched-

ule is a schedule with the minimum cost.
First, we try a greedy algorithm. Based on the university’s current exami-

nation schedule, the greedy program goes through all the courses sequentially.
Take a course from the course list (sequentially). Then calculate the changes
in the Total weight if it would be moved to another time slot providing there
is no conflict is created. This is done by a classical graph colouring method.
That is, a note can be moved from one colour set to another colour set if
this note does not join to any other note in both colour sets. Among all the
possible moves, the examination will be moved permanently to a new time
slot if it attaints to the lowest Total weight. A substantial improvement is
made by the greedy approach (see Table 1). Clearly, the greedy algorithm is
relatively easy to code and produced a much-improved schedule. In fact, only

Using New Metrics to find a good Examination Schedule 1131

12,000 examination schedule evaluations are needed so it is a time efficient
program.

Table 1: Comparison table 1
6/2 5/2 3/1 and 4/2 3/1 4/2 2/1 Total weight

Weight 60 50 40 30 20 10
Original 0 0 12 28 7 839 14185
Greedy 0 0 2 1 3 443 8620
SA 0 0 0 1 2 331 4740

It is well known that the greedy algorithm may not produce an optimal
solution. Simulated annealing is one of the techniques that can be used to
overcome this. It is a means of finding good solutions to combinatorial opti-
mization problems [2]. Ross and Corne [3] have an article on the application
of simulated annealing on this topic.

In a simulation annealing program, a move is a transition from one state
of the solution space to another. In our program, a prospective move is found
by randomly selecting an examination from the currant schedule and place
it into a randomly selected time slot without creating a conflict. We call the
schedules before and after a move the old schedule and the new schedule re-
spectively. The cost of the move is calculated as follows: cost = Total weight
of the new schedule − Total weight of the old schedule. Initially, the program
favours cost decreasing moves since the goal is to minimum the total weight
or obtain a near minimum weight schedule. However, by allowing only such
moves, it is likely that the final solution is a local minimum, rather than
a global minimum. To escape from a local minimum, cost increasing moves
must be made. If a move decreases the cost, it is always accepted. Otherwise,
it is accepted with probability P (∆E) = e−∆E/T , where T is the tempera-
ture and ∆E is the increase in cost that would result from this prospective
move. Initially, T is large and virtually all moves are accepted. Gradually,
T is decreased thus decreasing acceptance of cost increasing moves. Even-
tually, the system will reach a state in which very few moves are accepted.
In such a state, the system is said to be frozen. The sequence of decreas-
ing temperatures is called the annealing schedule. The next temperature is
obtained by Tn+1 = αTn, where α is the cooling rate. We obtain our best
result in the test runs by using α = 0.9 and T0 = 1000. A limited number of
moves are accepted at each temperature level, and we use max moves = 65
as a limit. Moreover, there is a limit for the number of moves attempted

1132 P. Smith, P. Wang

at each temperature and we use max attempted = 800. Once the maximum
number of attempted moves has been reached or the maximum number of
moves has been reached the temperature is lowered and a new iteration be-
gins. The process stops if the number of accepted moves has not reached
its maximum in a given number of iterations. That is, we consider the sys-
tem frozen if less than one in 12.31 (800/65) attempted moves is accepted.
All the above parameters are chosen based on our experiment results. The
following diagram (see Figure 1) illustrates the distinguished feature, escape
the local minimum, of the simulated annealing approach. As one can see
from the diagram, Total weight increases initially to escape the local mini-
mums and decreases very slowly in the fine turning stage (after 2,000 moves).
Over 18,000 moves were accepted. The diagram only shows the first 4,000
moves because Total weight changes very little after 4,000 moves. In order
to evaluate the cost of a move, the Total weight must be calculated. Com-
putationally, this could be very expensive. Hence our program is designed in
such a way that it only changes the Total weight for those students whose
examinations have been rescheduled. The result (see Table 1) of SA program
is impressive. The Total weight has been effectively reduced by almost one
half of the one obtained from the greedy approach.

Figure 1: Number of moves

A Genetic algorithm can be used to solve many optimization problems
(see [4], [6] and [5]). In the following we describe how we use the generic
algorithm to optimize the examination scheduling problem.

Using New Metrics to find a good Examination Schedule 1133

1. Data structure: Let E(i) be a time slot in the examination schedule
(1 ≤ E(i) ≤ 30) where the i-th examination (1 ≤ i ≤ 400) is assigned in
time slot E(i). This array is analogous to a chromosome in biology, which
is a string of 400 genes and each of gene can take any allele from the set
{1, 2, ..., 30}.

2. Evaluation function: The Total weight was used as the fittest eval-
uation function. We maintain a pool of 30 examination schedules. The
schedules that are the fittest will procreate and the rest eventually will die
off, childless.

3. Genetic operators: As with biological parents, two examination
schedules combine and contribute part of their characteristics to create their
offspring, the new examination schedule. First, we rank the 30 schedules in
descending order according to the metric we defined above. Secondly, we
select two parents. They are selected according to their rank in the popu-
lation, biases the probability (1 − rank

30
) of that examination schedule being

selected to parent the next generation. The crossover that produces the next
generation is defined as follows:

Let E1 and E2 be two parent examination schedules and E ′ be the newly
created offspring examination schedule. First, we fill E ′(i) by E1(i) if E1(i) =
E2(i) for 1 ≤ i ≤ 400. Then we shall fill the remaining E ′(i) by either E1(i)
or E2(i) providing this does not create a conflict in the time slot E1(i) in the
new scheduling E ′. If neither time slot E1(i) nor E2(i) can be used in the new
scheduling E ′ without create a conflict, then we shall assign it to an extra
time slot after the existed 30 time slots. Then a penalty of 2500 is added to
the Total weight of the schedules with an extra time slot. The idea is the
new schedule will inherit the good traits (the common genes) from its parents
assuming the parents are good schedules at this stage of optimization. Then
we shall rank all schedules and eliminate the last one from the pool.

To avoid the chance of premature convergence (sometimes called inbreed-
ing), a diversity must be introduced into the population. In each iteration,
we select an examination randomly and assign it into a randomly selected
time slot provided that there is no conflict in the schedule. More sophis-
ticated mutations such as introduce diversity only between the two similar
schedules will increase the computation time substantially.

The result shows that the Total weight is reduced to 11,005 with 2 un-
scheduled examinations on average. These two unscheduled examinations
added 5000 total penalty to the Total weight. One can see that the genetic
algorithm is better than the one obtained from the greedy algorithm but

1134 P. Smith, P. Wang

not as good as the one obtained from the simulated annealing algorithm.
However, it provides more alternatives to the registrar’s office since there
is a pool 30 good examination examination scheduling for the registrar to
choose from. Considering we are trying to schedule 400 examinations for
3500 students and there are only a few students who are going to be affected
with the two unscheduled examinations, the registrar’s office may be willing
to accommodate the few individual students who have conflicts in order to
accommodate other requests.

2.2 A new metric

The penalties commonly used in defining Total weight are mostly arbitrarily
decided and more likely imposed by the administration’s desire to minimize
particular cases such as 3 examinations within 24 hours. The natural question
is what is the “dream examination schedule”from a student’s perspective?
The obvious answer is that the five final examinations should be evenly dis-
tributed during the 10 day examination period. That is, one examination
in every two days and the last examination in the very last time slot of ex-
amination period. Let di,j be the number of time slots between the end of
i-th examination and the beginning of the j-th examination. New metric
=
∑

each student |5 − di,j|. This implies the new metric will be 0 if a student
has one examination in every two days. The metric will add penalty of 5 to
the New metric if a student has back to back examinations. We run the SA
program again with this new metric (see the comparison result in Table 2).

Table 2: Comparison table 2

6/2 5/2 3/1 and 4/2 3/1 4/2 2/1 New metric
Old schedule 0 0 0 1 2 311 245,867
New schedule 0 0 0 1 0 395 238,848

As one can see from Table 2, there are 84 more students who have two
examinations in the same day in the new schedule. However, the value of
New metric was reduced by more than 7,000. We checked the bottom 200
students with the worst examination schedules in both new and old schedules
and observed that they are much better off with the New schedule.

Using New Metrics to find a good Examination Schedule 1135

References

[1] M.W. Carter, A survey of practical applications of examination
timetabling, Operations Research, 34, no. 2, (1986), 193–202.

[2] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Optimization by Simulated
Annealing, Science, 220, no. 4598, (1983), 671–680.

[3] P. Ross, D. Corne, Comparing Genetic Algorithms, Simulated Anneal-
ing, and Stochastic Hillclimbing on Timetabling Problems, Proceeding
of A/SB Workshop on Evolutionary Computing, (1995), 94–102.

[4] L. Davis, Genetic, Algorithm and Simulated Annealing, Research Notes
in Artificial Intelligence, Morgan Kaufmann Publishers, 1993.

[5] D.E. Goldberg, Genetic Algorithms in search, optimization and Machine
Leaning, Addison Wesley Publishing Company, Inc., 1989.

[6] E. Burke, D. Ellim, R. Weare, A Genetic Algorithm Based University
Timetabling System, Proceedings of the 2nd East-West International
Conference on Computer Technologies in Education, I, (1994), 35–40.

