The unit solutions of $x+y=x y$ over quadratic number fields

Supawadee Prugsapitak, Piyawan Aryapitak

Division of Computational Science
Faculty of Science
Prince of Songkla University
Hatyai, Songkhla, Thailand
email: supawadee.p@psu.ac.th, 6310210261@psu.ac.th
(Received February 20, 2024, Accepted March 30, 2024, Published June 1, 2024)

Abstract

In this article, we show that the equation $x y=x+y$ has a unit solution over the ring of integers of a quadratic field $\mathbb{Q}(\sqrt{d})$ if and only if $d=-3$ or $d=5$.

1 Introduction

For a square free integer d, the unit solutions of the equation $x y z=x+y+z$ over the ring of integers of a quadratic field $\mathbb{Q}(\sqrt{d})$ were found in 1987 by Mollin, Small, Varadarajan, and Wash [3]. They showed that when $d=-1,2$, or 5 , there is a finite number of unit solutions to the equation $x y z=x+y+z$ and that for other values of d there are no solutions. Inspired by a study of the unit solutions of the equation $x y z=x+y+z$ over the ring of integers of a quadratic field, it is natural to ask a similar question to the equation $x y=x+y$. We will show that the equation $x y=x+y$ has a unit solution over the ring of integers of a quadratic field $\mathbb{Q}(\sqrt{d})$ if and only if $d=-3$ or $d=5$.

Key words and phrases: Diophantine Equations, Quadratic Number
Fields, Unit Solutions
AMS (MOS) Subject Classifications: 11D09, 11D99.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Main result

Theorem 2.1. Let d be a square free integer and let $S(d)$ be a set of unit solutions of the equation $x y=x+y$ over the ring of integers of the quadratic fields $\mathbb{Q}(\sqrt{d})$. Then

$$
S(d)= \begin{cases}\emptyset & \text { if } d \neq-3,5 \\ \left\{\left(\frac{1+\sqrt{-3}}{2}, \frac{1-\sqrt{-3}}{2}\right),\left(\frac{1-\sqrt{-3}}{2}, \frac{1+\sqrt{-3}}{2}\right)\right\} & \text { if } d=-3 \\ \left\{\left(\frac{3 \pm \sqrt{5}}{2}, \frac{1 \pm \sqrt{5}}{2}\right),\left(\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right),\left(\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right),\right. & \\ \left.\left(\frac{1 \pm \sqrt{5}}{2}, \frac{3 \pm \sqrt{5}}{2}\right)\right\} & \text { if } d=5 .\end{cases}
$$

Proof. Assume that x and y are units and $x y=x+y$. Then $(x-1)(y-1)=1$. It follows that $N(x-1)=N(y-1)= \pm 1$.
Case $1 d \equiv 2,3 \bmod 4$. Thus $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. Let $x=a+b \sqrt{d}$ for some $a, b \in \mathbb{Z}$. Then $x-1=a-1+b \sqrt{d}$ for some $a, b \in \mathbb{Z}$. Then $N(x)=a^{2}-b^{2} d$ and $N(x-1)=(a-1)^{2}-b^{2} d$. If $N(x)=N(x-1)$, then $a^{2}-b^{2} d=(a-1)^{2}-b^{2} d$. Thus $|a|=|a+1|$, which is a contradiction. If $N(x)=-N(x-1)$, then $a^{2}-b^{2} d=-(a-1)^{2}+b^{2} d$ and this implies that $2 a^{2}-2 a-2 b^{2} d=-1$, which is also a contradiction.
Case $2 d \equiv 1 \bmod 4$. Thus $\mathcal{O}_{K}=\mathbb{Z}[(1+\sqrt{d}) / 2]$. Let $x=a+b(1+\sqrt{d}) / 2$ for some $a, b \in \mathbb{Z}$. Then $y=\frac{1}{a-1+b\left(\frac{1+\sqrt{d}}{2}\right)}+1=\frac{a-1+b\left(\frac{1-\sqrt{d}}{2}\right)}{N(x-1)}+1$.

Case 2.1 $N(x)=N(x-1)=1$. We obtain $b=1-2 a$. Thus $N(x)=$ $a^{2}+a(1-2 a)+(1-2 a)^{2}\left(\frac{1-d}{4}\right)=1$. This implies that $a=\frac{1-4 M \pm \sqrt{12 M-3}}{2(1-4 M)}$ where $M=(1-d) / 4$. Thus $12 M-3=z^{2}$ for some $z \in \mathbb{Z}$. This yields $3 d=-z^{2}$. So $z=3 z_{0}$ for some integer z_{0}. We get $d=-3 z_{0}^{2}$. Since d is a square free integer, $d=-3$. It follows that $a=0$ and $b=1$ or $a=1$ and $b=-1$. Consequently, $x=\frac{1 \pm \sqrt{-3}}{2}$ and $y=\frac{1 \mp \sqrt{-3}}{2}$.

Case $2.2 N(x)=1$ but $N(x-1)=-1$. We obtain $b=3-2 a$ and $N(x)=a^{2}+a(3-2 a)+(3-2 a)^{2}((1-d) / 4)=1$. This implies that $a=$ $\frac{3(1-4 M) \pm \sqrt{5-20 M}}{2(1-4 M)}$ where $M=(1-d) / 4$. Thus $5-20 M=z^{2}$ for some $z \in \mathbb{Z}$. This yields $5 d=z^{2}$. So $z=5 z_{0}$ for some integer z_{0}. We get $d=5 z_{0}^{2}$. Since d is a square free integer, we have $d=5$. It follows that $a=1$ and $b=1$ or $a=2$ and $b=-1$. Thus, solutions x and y are $x=\frac{3 \pm \sqrt{5}}{2}, y=\frac{1 \pm \sqrt{5}}{2}$.

Case 2.3 $N(x)=-1$ but $N(x-1)=1$. Thus $b=-1-2 a$ and this implies that $N(x)=a^{2}+a(-1-2 a)+(-1-2 a)^{2}((1-d) / 4)=-1$. Hence
$a=\frac{4 M-1 \pm \sqrt{5-20 M}}{2(1-4 M)}$ where $M=(1-d) / 4$. Thus $5-20 M=z^{2}$ for some $z \in \mathbb{Z}$. This yields $5 d=z^{2}$. So $z=5 z_{0}$ for some integer z_{0}. We get $d=5 z_{0}^{2}$. Since d is a square free integer, we have $d=5$. It follows that $a=0$ and $b=-1$ or $a=-1$ and $b=1$. Therefore, $x=\frac{-1 \mp \sqrt{5}}{2}, y=\frac{-1 \pm \sqrt{5}}{2}$.

Case 2.4 $N(x)=N(x-1)=-1$. Hence $b=1-2 a$ and $N(x)=$ $a^{2}+a(1-2 a)+(1-2 a)^{2}((1-d) / 4)=-1$. This implies that $a=\frac{1-4 M \pm \sqrt{5-20 M}}{2(1-4 M)}$ where $M=(1-d) / 4$. Thus $5-20 M=z^{2}$ for some $z \in \mathbb{Z}$. This yields $5 d=z^{2}$. So $z=5 z_{0}$ for some integer z_{0}. We get $d=5 z_{0}^{2}$. Since d is a square free integer, $d=5$. It follows that $a=0$ and $b=1$ or $a=1$ and $b=-1$. Hence $x=\frac{1 \pm \sqrt{5}}{2}, y=\frac{3 \pm \sqrt{5}}{2}$.

Acknowledgment. We thank the referee for valuable comments and suggestions.

References

[1] Saban Alaca, Kenneth Stuart Williams, Introductory Algebraic Number Theory, 2024.
[2] Andrej Dujella, Number Theory, 2021.
[3] Richard Anthony Mollin, Charles Small, Kalathoor Varadarajan, Peter Garth Walsh, On unit solutions of the equation $x y z=x+y+z$ in the ring of integers of a quadratic field, Acta Arithmetica, 4, no. 48, (1987), 341-345.

