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Abstract

In this paper, we introduce the notions of upper and lower (τ1, τ2)-
continuous multifunctions. We also investigate some characterizations
of upper and lower (τ1, τ2)-continuous multifunctions.

1 Introduction

Continuity for functions is an important concept for the study and investiga-
tion in topological spaces. This concept has been extended to the setting of
multifunctions and has been generalized by weaker forms of open sets. Sev-
eral different forms of continuous multifunctions have been introduced and
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studied over the years. In 1996, Popa and Noiri [11] obtained some characteri-
zations of upper and lower α-continuous multifunctions. Moreover, Popa and
Noiri [10] introduced and studied the notions of upper and lower β-continuous
multifunctions. In 2000, Noiri and Popa [7] investigated the concepts upper
and lower M-continuous multifunctions as multifunctions defined between
sets satisfying certain minimal conditions. Popa and Noiri [9] introduced
and investigated the notion of m-continuous multifunctions. In 2004, Park
et al. [8] introduced and studied δ-precontinuous multifunctions as a gener-
alization of precontinuous multifunctions due to Popa [12]. Laprom et al. [6]
introduced and studied the notions of upper and lower β(τ1, τ2)-continuous
multifunctions. Viriyapong and Boonpok [13] introduced and investigated
the concepts of upper and lower (τ1, τ2)α-continuous multifunctions. More-
over, several characterizations of (τ1, τ2)δ-semicontinuous mutifunctions and
almost weakly (τ1, τ2)-continuous multifunctions were established in [4] and
[3], respectively. In this paper, we introduce the notions of upper and lower
(τ1, τ2)-continuous multifunctions and discuss some characterizations of up-
per and lower (τ1, τ2)-continuous multifunctions.

2 Preliminaries

Throughout this paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [5] of A and is
denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is
called the τ1τ2-interior [5] of A and is denoted by τ1τ2-Int(A). A subset A of a
bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [13] (resp. (τ1, τ2)s-
open [4]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A))).

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For
a multifunction F : X → Y , following [1] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each
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A ⊆ X , F (A) = ∪x∈AF (x).

3 Upper and lower (τ1, τ2)-continuous multi-

functions

In this section, we introduce the notions of upper and lower (τ1, τ2)-continuous
multifunctions. Moreover, we investigate some characterizations of upper and
lower (τ1, τ2)-continuous multifunctions.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be:

(1) upper (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V of
Y such that F (x) ⊆ V , there exists a τ1τ2-open set U of X containing
x such that F (U) ⊆ V ;

(2) lower (τ1, τ2)-continuous if for each x ∈ X and each σ1σ2-open set V
of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-open set U of X

containing x such that F (z) ∩ V 6= ∅ for each z ∈ U .

Theorem 3.2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is upper (τ1, τ2)-continuous;

(2) F+(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) F−(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(B)) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(B)) for every subset B of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y and x ∈ F+(V ). Then
F (x) ⊆ V and by (1), there exists a τ1τ2-open set U of X containing x such
that F (U) ⊆ V . Thus, x ∈ U ⊆ F+(V ) and hence x ∈ τ1τ2-Int(F

+(V )).
Therefore, F+(V ) ⊆ τ1τ2-Int(F

+(V )). This shows that F+(V ) is τ1τ2-open
in X .

(2) ⇒ (3): This follows from the fact that F+(Y − B) = X − F−(B) for
every subset B of Y .

(3) ⇒ (4): Let B be any subset of Y . Then, σ1σ2-Cl(B) is σ1σ2-closed in
Y and by (3), τ1τ2-Cl(F

−(B)) ⊆ τ1τ2-Cl(F
−(σ1σ2-Cl(B))) = F−(σ1σ2-Cl(B))
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(4) ⇒ (5): Let B be any subset of Y . By (4), we have

X − τ1τ2-Int(F
+(B)) = τ1τ2-Cl(X − F+(B))

= τ1τ2-Cl(F
−(Y − B))

⊆ F−(σ1σ2-Cl(Y −B))

= F−(Y − σ1σ2-Int(B))

= X − F+(σ1σ2-Int(B))

and hence F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(B)).

(5) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y such that
F (x) ⊆ V . Then x ∈ F+(V ) = τ1τ2-Int(F

+(V )). There exists a τ1τ2-open
set U of X containing x such that U ⊆ F+(V ); hence F (U) ⊆ V . This shows
that F is upper (τ1, τ2)-continuous.

Theorem 3.3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is lower (τ1, τ2)-continuous;

(2) F−(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) F+(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
+(B)) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F (τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(F (A)) for every subset A of X;

(6) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(B)) for every subset B of Y .

Proof. We only prove the implications (4) ⇒ (5) and (5) ⇒ (6) with the
other proofs being similar to those of Theorem 3.2.

(4) ⇒ (5): Let A be any subset of X . By (4),

τ1τ2-Cl(A) ⊆ τ1τ2-Cl(F
+(F (A))) ⊆ F+(σ1σ2-Cl(F (A)))

and hence F (τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(F (A)).
(5) ⇒ (6): Let B be any subset of Y . By (5),

F (τ1τ2-Cl(F
+(Y −B))) ⊆ σ1σ2-Cl(F (F+(Y − B)))

⊆ σ1σ2-Cl(Y − B)

= Y − σ1σ2-Int(B).
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Since

F (τ1τ2-Cl(F
+(Y −B))) = F (τ1τ2-Cl(X − F−(B)))

= F (X − τ1τ2-Int(F
−(B))),

we haveX−τ1τ2-Int(F
−(B)) ⊆ F+(Y −σ1σ2-Int(B)) = X−F−(σ1σ2-Int(B))

and hence F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
−(B)).

Definition 3.4. [2] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y containing
f(x), there exists a τ1τ2-open set U of X containing x such that f(U) ⊆ V .
A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called (τ1, τ2)-continuous if f has
this property at each point of X.

Corollary 3.5. [2] For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following
properties are equivalent:

(1) f is (τ1, τ2)-continuous;

(2) f−1(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) f(τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(f(A)) for every subset A of X;

(4) τ1τ2-Cl(f
−1(B)) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f
−1(B)) for every subset B of Y ;

(6) f−1(K) is τ1τ2-closed in X for every σ1σ2-closed set K of Y .
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