On irreducibility in $\mathbb{F}_{q}[X][Y]$

Saber Mansour
Department of Mathematical Sciences
Faculty of Applied Sciences
Umm Al-Qura University
Mecca, Saudi Arabia

email: samansour@uqu.edu.sa
(Received June 8, 2023, Accepted February 18, 2024, Published June 1, 2024)

Abstract

In this note, we provide a new criterion of irreducibility of polynomials over $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is a finite field.

1 Introduction

A polynomial is reducible over a given field if it can be expressed as a product of lower degree polynomials with coefficients in the same field. Otherwise, it is called irreducible.

Characterizing irreducible polynomials over a finite field \mathbb{F}_{q} or \mathbb{Q} is an intriguing subject that has just lately received attention. It is known that there is no criteria that enables us to determine if such polynomial is reducible or not.

However, a variety of tests, known as irreducibility criteria, have been established that provide useful information for certain types of polynomials.

Lipka [6] identified irreducibility conditions for integer polynomials of the form

$$
f(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0} p^{k}
$$

Key words and phrases: Polynomials, irreducibility, criterion, finite fields.
AMS (MOS) Subject Classifications: 11Txx, 11T55.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
where p is a prime number and $p \nmid a_{0}$. As an example, he proved that such polynomial is irreducible over \mathbb{Q} for all but finitely many positive integers k.

Chandoul et al. [1] proved a widely accepted irreducibility criterion which states that

Theorem 1.1. If $\Lambda(Y)=Y^{d}+\lambda_{d-1} Y^{d-1}+\cdots+\lambda_{0}$ be a polynomial with $\lambda_{i} \in F_{q}[X], \lambda_{0} \neq 0$ and $\operatorname{deg} \lambda_{d-1}>\operatorname{deg} \lambda_{i}$, for each $i \neq d-1$. Then Λ is irreducible over $F_{q}[X]$.

In this article, we focus on irreducible polynomials with coefficients in $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is a finite field.

These results were the starting point for many researches and the exploration of new criterions [2]. For older results, see [3, 4]. In this note, we provide a new criterion for irreducibility of polynomials over $\mathbb{F}_{q}[X]$.

In this article, we prove an irreducibility criterion over $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is a finite field.

2 Preliminaries

In this section, we recall some basic concepts and provide the notation.
Throughout this paper, \mathbb{F}_{q} denotes the finite field with q elements, where q is a power of a prime number.

We denote by $\mathbb{F}_{q}[X]$ the ring of polynomials with coefficients in \mathbb{F}_{q} and by $\mathbb{F}_{q}(X)$ the quotient field of $\mathbb{F}_{q}[X]$. Let $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ be the field of Laurent formal power series defined as follows:

$$
\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)=\left\{\sum_{n \geq n_{0}} a_{n} X^{-n}, \quad a_{n} \in \mathbb{F}_{q} \text { and } n_{0} \in \mathbb{Z}\right\}
$$

Let $w=\sum_{n=n_{0}}^{\infty} a_{n} X^{-n}$ be an element of $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$.
We denote by $[w]=\sum_{n=n_{0}}^{0} a_{n} X^{-n}$ if $n_{0} \leq 0$ and $[w]=0$ if $n_{0}>0$, the integer $\operatorname{part}[w]$ of w. Its fractional part $\{w\}$ is defined by $w-[w]=\sum_{n=1}^{\infty} a_{n} X^{-n}$.

A non-Archimedean absolute value $|\cdot|$ on $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$, is defined, for any
element $w \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ having the form

$$
w=\sum_{n=n_{0}}^{\infty} a_{n} X^{-n} \quad\left(a_{n} \in \mathbb{F}_{q}\right),
$$

by $|w|=e^{-n_{0}}$ if $w \neq 0$, where n_{0} is the smallest index verifying $a_{n_{0}} \neq 0$, and $|w|=0$ if $w=0$ (see [5]).

We know that $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is complete and locally compact with respect to the metric defined by this absolute value.

We denote by $\overline{\mathbb{F}}_{q}\left(\left(X^{-1}\right)\right)$ an algebraic closure of $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$. We note that the absolute value has a unique extension to $\overline{\mathbb{F}}_{q}\left(\left(X^{-1}\right)\right)$. To denote this extended absolute value, we also use the symbol $|\cdot|$.

3 Main results

Theorem 3.1. Let \mathbb{F}_{q} be a finite field of characteristic $p, n \geq 2$ and let

$$
P(Y)=A_{s} Y^{s}+A_{s-2} Y^{s-2}+A_{s-3} Y^{s-3}+\cdots+A_{1} Y+A_{0}
$$

be a polynomial over $\mathbb{F}_{q}[X]$ such that $A_{s} A_{s-2} A_{0} \neq 0, A_{s}$ and A_{s-2} has a same irreducible factor B, with lcm $\left(A_{s-2}, B\right)=B^{m}\left(A_{s-2}=B^{m} a_{s-1}\right)$ and $\operatorname{lcm}\left(A_{s}, B\right)=B^{n}\left(A_{s}=B^{n} a_{s}\right)$. If $n \neq m[2]$ and

$$
n>m s+\frac{(s-1)\left(\operatorname{deg} A_{s}-m \operatorname{deg} B\right)+M}{\operatorname{deg} B}
$$

with $M=\max (\underset{i \neq s, s-1}{\operatorname{deg}} A i)$, then P is irreducible over $\mathbb{F}_{q}[X]$.
Proof. Assume that P decomposes as $P(Y)=Q(Y) H(Y)$ such that Q, H are defined as follows:

$$
Q(Y)=Q_{j} Y^{j}+Q_{j-1} Y^{j-1}+Q_{j-2} Y^{j-2}+\cdots+Q_{1} Y+Q_{0}
$$

and

$$
H(Y)=H_{k} Y^{k}+H_{k-1} Y^{k-1}+H_{k-2} Y^{k-2}+\cdots+H_{1} Y+H_{0}
$$

where $Q_{j}, \cdots, Q_{0}, H_{k}, \cdots, H_{0} \in \mathbb{F}_{q}[X]$, with $j, k \geq 1 j+k=s, Q_{j} H_{k}=A_{s}$, $Q_{0} H_{0}=A_{0}$ and Let $B^{d}=\operatorname{lcm}\left(Q_{j}, B\right),\left(Q_{j}=B^{d} q_{j}, d \geq 0\right)$, then $B^{n-d}=$ $l c m\left(H_{k}, B\right)\left(H_{k}=B^{m-d} h_{k}\right)$ and we must have $d \leq n-d$.

Consider the factorization of P and Q in $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$. We have

$$
P(Y)=A_{s}\left(Y-\omega_{1}\right) \cdots\left(Y-\omega_{n}\right)
$$

and

$$
Q(Y)=Q_{j}\left(Y-\omega_{1}\right) \cdots\left(Y-\omega_{j}\right),
$$

where $\omega_{i} \in \overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$, for all $i:=1, \cdots, n$.
Consider, now, the non-Archimedean absolute value, and set a real number $\alpha \geq 0$ such that

$$
\left|A_{s}\right|>e^{\alpha} \max \underset{\substack{i \neq s}}{|A i| .}
$$

Then, using the viète theorem, we have

$$
\left.\left|\omega_{1} \cdots \omega_{s}\right|=\left|\omega_{1}\right| \cdots\left|\omega_{s}\right|=\frac{\left|A_{0}\right|}{\left|A_{s}\right|}<\frac{\left|A_{0}\right|}{e^{\alpha} \max |A i|}<\frac{1}{i \neq s} \right\rvert\, .
$$

Therefore, for any $j:=1, \cdots, n$, we must have $\left|\omega_{j}\right|<\frac{1}{e^{\alpha / s}}$.
As a result, we get

$$
\left|\omega_{1} \cdots \omega_{j}\right|<\frac{1}{e^{j \alpha / s}} .
$$

On the other hand, we have

$$
\left|\omega_{1} \cdots \omega_{j}\right|=\left|\frac{Q_{0}}{Q_{j}}\right|=\left|\frac{Q_{0}}{B^{d} q_{j}}\right| \geq \frac{1}{\left|B^{m}\right|\left|a_{s}\right|} .
$$

To reach a contradiction, it is still necessary to choose α such that

$$
\frac{1}{\left|B^{m}\right|\left|a_{s}\right|} \geq \frac{1}{e^{j \alpha / s}} .
$$

It can be sufficient to choose α such that

$$
\left|B^{m}\right|\left|a_{s}\right| \leq e^{\alpha / s}
$$

or, equivalently,

$$
\alpha \geq s m \operatorname{deg} B+s\left(\operatorname{deg} A_{s}-n \operatorname{deg} B\right)
$$

A conceivable value for α is $s m \operatorname{deg} B+s\left(\operatorname{deg} A_{s}-n \operatorname{deg} B\right)$ which leads to a contradiction if $n>m s+\frac{(s-1)\left(\operatorname{deg} A_{s}-m \operatorname{deg} B\right)+M}{\operatorname{deg} B}$, where $M=$ $\max (\underset{i \neq s, s-1}{\operatorname{deg} A i)}$. The proof is now complete.

4 Conclusions

Since there is no property that determines whether a polynomial is irreducible or not, it is considered a success to set up a criterion describing some family of irreducible polynomials.

The idea presented in this paper points to a variety of possible directions one could take further research which may enable us to describe new larger families of irreducible polynomials over a finite field.

Acknowledgements

We are very grateful to the anonymous referees for their thoughtful comments.

References

[1] A. Chandoul, M. Jellali, M. Mkaouar, Irreducibility criterion over finite fields, Communications in Algebra, 39, no. 9, (2011), 3133-3137.
[2] M. Ben Nasr, H. Kthiri, Characterization of 2-Pisot elements in the field of Laurent series over a finite field, Mathematical Notes, 107, (2020), 552-558.
[3] R. Thangadurai, Irreducibility of polynomials whose coefficients are integers, Mathematics Newsletter (RMS, India), 17, (2007), 29-37.
[4] H. L. Dorwart, Irreducibility of polynomials, The American Mathematical Monthly, 42, no. 6, (1935), 369-381.
[5] V. G. Sprindz̃uk, Mahler's problem in metric number theory Translation of Mathematical monographs, 25, (1969), Amer. Math. Soc., Providence, RI, USA.
[6] S. Lipka, Über die Irreduzibilit at von Polynomen, Math. Ann., 118, (1941), 235-245.

