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Abstract

The Reproducing Kernel Hilbert space is a special class of Hilbert
spaces in which the evaluation functional is continuous and bounded.
In this paper, we investigate the Uncertainty Principle in some Re-
producing Kernel Hilbert.

1 Introduction

The uncertainty principle is one of the celebrated principles in mathematics
and has encompassed other fields of study, particularly in quantum mechan-
ics. Over the years, mathematicians had delved in this principle and have
developed their own variations according to their domain. The mathematical
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survey by Folland and Sitaram [2] had summed it up as follows: a nonzero
function and its Fourier transform cannot both be sharply localized.

In quantum mechanics, the uncertainty principle states that some param-
eters cannot be measured simultaneously without endangering the accuracy
of the other. An example of this is the position and momentum of a particle.
This has led physicists to abandon the classical Newtonian laws of mechan-
ics in dealing with states at a quantum level [1]. In a classical experiment,
a system can be represented as a point in a plane called the classical phase
space and every parameter related to its movement can be computed through
its coordinates. This straight-forward approach is null in the quantum level,
and thus mathematicians and physicists embarked on the quest of finding
the best suited representation of a quantum system. They found out that
a state of a quantum system can be represented as a unit vector in a com-
plex Hilbert space, and an observable, or a quantity to be measured, as a
Hermitian operator [3].

In [6], the following are defined: Given f € L*(R) with || f| ;2w = 1, we
define its associated mean

() = Mean(1f) = [ tl5(0)Fat,
and variance

A2(f) = Var(|?) /|t— PPIF ()Pt

2 The Space H,(R)
Fix ¢ € L?(R) such that ¢ > 0 on R and ¢ € L'(R). Define
%(p) ={t eR:p(t) # 0}
Define H,(R) as the vector space of all f € L?(R) such that f(w) = 0 if

$(w) =0 and
O
/2(@) P(w) o <

Note that ¢ € H,(R). Indeed,

/E(@ |<Z((¢:))|2dw _ /2(@ P(w)dw = /R@(w)dw < oo,




Uncertainty Principle in Reproducing Kernel Hilbert Spaces 1275

since ¢ € L'(R). For f,g € H,(R), define

(f, 9>H¢(R) = \/% - %dw
and
) L fw)l?
e = 5= [ G

Lemma 2.1. Let ¢ € L*(R). Fiz z € R and define p.(t) = ¢(t — z) for
each t € R. Then

(a) f.(w) = e “"p(w), for almost every w € R

(b) If ¢ is k-times differentiable for k € N, then ¢, is also k-times differ-

entiable. Moreover, ¢\ (w) = e‘i“xgpzk) (w), for almost every w € R

(¢) pa € Hy(R)

Proof. Fix z € R and p € L*(R). Then

‘Pw(w> = P (t)e_iwtdt

ot — x)e ™'dt

——

(S)e—iw(s—i-x)ds
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for almost every w € R. For the second part, fix £ € N. Then

Qﬁx(k) (w) =

—

SOgc)e—io.)tdt
R
B (t — z)e ™t

(k) (S)e—iw(s-l-:c) ds
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for almost every w € R. Finally, note that from the first part @,(w) =

—iwx

e “?p(w) = 0 whenever ¢p(w) = 0. Using the first part, we have
o 2 —wx 2
[ Ry, [,
2($) P(w) ) P(w)
= [ e
(%)
= / P(w)dw < 00
R
since p € L'(R). It follows that ¢, € H,(R). O

Proposition 2.2. H,(R) has the following properties:
(a) Hy(R) is a Hilbert space
(b) If f € Hy(R), then f € L'(R)
(c) For each x € R, (f, 0u)n,m) = f(x) for every f € H (R).

Proof. Let {f,}:>, be a Cauchy sequence in H,(R). Now for m,n € N,

Fml)?

[l
= Fullh iy = %EA# e

/ fow)  f(w)
Var Jeg) Volw)  Vew)

?dw.

Hence {j’;} is also a Cauchy sequence in H,(R) for which ¢ does not
¥

n=1
vanish and hence f—"A is also a Cauchy sequence in L?*(R). Thus there
Vel |
exists h € L?(R) such that ||-—= — h — 0 as n — oo.
¥

L2 (R)

Note that g = hy/¢ € L*(R). Indeed, by Cauchy-Schwarz Inequality,

/m %F/m w_ﬂm—/m 2)dz < |2 lollBl ey

where || - || denotes the uniform norm.
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Since the Fourier transform is a Hilbert space isomorphism from L*(R)
onto itself, there exists f € L*(R) such that f = g. Note that f(w) = g(w) =

~

©) _ @)

VéWw) p(w)

h(w)y/$(w) = 0 whenever p(w) = 0. Also,

) R 2
£ (0)? fw) ’

H duo — dw = h d .
e /2(@) pw) /w) =00] /2@)' it = e
Thus f € H,(R) and

) R 2
_ 12 _ L nw) __J) d
an f||H¢(R) \/ﬂ /E(@) QO(ALU) \/m ?
R 2
1 fn(w)
_ 1 — h(w)| dw—0
755 o [ 05 0|

as n — oo by the pointwise convergence in L?(R). This proves the first part.

For the second part, fix f € H,(R). Then f = 0 outside () and by
Cauchy-Schwarz Inequality we have

Lifends = [ i@l [ el
/E(@ |f(w)| Vo(w)dw

e .
< (f, Ggra) ([, sem)” <

Accordingly, f € L*(R).
Lastly, fix x € R and f € H,(R). Since ¢ > 0, Lemma 2.1 implies that
Bo(w) = e“?P(w) for almost every w € X(p). Thus we have

o L f(W)()OAx(CU) - L R IWT _
(f, Px) @) = Vol o) dw = Nord A fw)e™ dw = f(x).

3 Main Result

We have the analogous result for the odd kernel and its transform in H,(R).
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Theorem 3.1. Let ¢ € L*(R) be an odd function. Then for everyt € R,
A% () A1) 2 (lll7ey + [t @l T2 @) 2l Z2@)-

Proof. Let ¢ € L*(R) be odd and ¢t € R. Then

ue) = [ alplo)lds
= /x\gp(a:—t)ﬁdx
= / (5 +t)|p(x)|?ds, where s =x — ¢

_ / slols)[2ds + / to(s)Pds
= pu(e) + el Zem

Moreover,

ue) = [wlpPds = [l ) Pdo = [ wlp@)Pdo = u(o)

Then

B = [ lo=ue)Plenta) o
= [lo = nePlota - s
= [l = (o) + el Ple(e)Pds wheres o ¢
= /|s+t—t||<p||%2(R)|2|g0(s)|2ds since ¢ is odd

/ 15— 1 l2am) — 1)P(s)Pds

> [ 15 = ey = DPolo) s
> [ IsPlo(s)Pds - / el — 1 le(s)ds
> [ Illos)Pds = Pl lm — 1 (lelege)

(@) = Pllolzam (lllze@ — 1)?

and
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A%g) = / & — (@) 2|u(a) P
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T (12l = 1@ P)1o(x) P
[1aPipita - [ ut)Pot) s
> [ fallpta) Pdz = (ule) P ol

= M(@)—M(S@)H@H%(R)
= w(@)1 = 8l )

v
=X
I

Combining gives the desired result. O
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