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Abstract

The concept of power dominator equitable coloring is proposed in
this paper as a novel graph coloring technique. A power dominator
coloring of a graph G is a proper coloring in which each vertex power
dominates every vertex of some color class. The power dominator
equitable coloring is a proper k-coloring of G, in which every vertex
of G power dominates all vertices of some color class C1, C2, C3, . . .

or Ck such that the difference in size between any two color classes
is at most 1. The minimum number of colors in a power dominator
equitable coloring set of vertices in a graph G is called the power
dominator equitable chromatic number of G, denoted by χpde(G). In
this paper we have obtained χpde for some special classes of graphs.

1 Introduction

In this paper, we introduce the concept of power dominator equitable color-
ing, a variant of proper vertex coloring in graphs. This coloring ensures that
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each vertex power dominates every vertex in some color class, maintaining
a balance in the number of vertices across color classes. The application
of this concept is significant in computer networks, where high-power nodes
dominate others, ensuring network stability and resilience to failures.

Power domination, introduced by Cockayne et al. [1] in 1998 was initially
motivated by monitoring electric power systems. Haynes et al. [2] further ex-
plored this concept in 2003. The application of power domination is notable
in modeling trash collection routes, aiming to minimize scheduling conflicts.
Equitable coloring, proposed by Mayer [4] in 1973, ensures a balanced distri-
bution of allocating workdays to routes on each day [3]. Combining power
dominator coloring and equitable coloring, we introduce the concept of power
dominator equitable coloring.

2 Power Dominator Equitable Coloring

We now give a formal definition of Power Dominator Equitable Coloring of
a graph. For a vertex v in G, let N(v) denote its open neighbourhood.

Definition 2.1. Let v ∈ V (G), the monitoring set M(v) is constructed as

follows:

Step 1: M(v) = N(v) ∪ {v}
Step 2: Add a vertex u in V (G) \M(v) to M(v) whenever u has a neighbor

w ∈ M(v) such that all the neighbors of w other than u are already in M(v).
Step 3: Repeat Step 2 till no more vertices be added to M(v).
We say that the vertex v power dominates the vertices in M(v).

Definition 2.2. The power dominator equitable coloring of a graph G is a

proper k-coloring of vertices of G with color classes C1, C2, . . . , Ck such that

(i) each vertex of G power dominates all the vertices of at least one color

class C1, C2, . . . Ck and (ii) ||Ci| − |Cj|| ≤ 1, 1 ≤ i, j ≤ k. The minimum

number of colors needed for this coloring is termed as the power dominator

equitable chromatic number and is denoted by χpde(G).

In this paper χpde has been determined for Path Graph Pn, Cycle Graph
Cn, Complete Graph Kn, Wheel Graph Wn, Star Graph Sn, Bistar Graph
ST (m,n), Helm Graph Hn, Sunflower Graph SFn, Book Graph Bn, Lollipop
Graph Ln,m, Tadpole Graph Tm,n, Spider Graph Sn and Pan Graph PNn.
We refer to [5, 6] for the definitions of these graphs.
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Figure 1: Wheel Graphs with χpde(W9) = 5

Figure 2: Wheel Graphs with χpde(W10) = 6

Theorem 2.3. We have the following results:

(i) χpde (Pn) = 2, for n ≥ 2.

(ii)

χpde(Cn) =

{

3 if n is odd, for n ≥ 3,

2 if n is even, for n ≥ 4.

(iii) χpde (Kn) = n, for n ≥ 3.

χpde(Wn) =

{

4 for n = 4,

⌊n
2
⌋+ 1 for n ≥ 5.

(v)

χpde(Sn) =

{

⌊n
2
⌋ for n odd , n ≥ 5,

n
2
+ 1 for n even , n ≥ 4.

(vi) χpde(ST (m,n)) = m+ n− 2, for m,n ≥ 3.
(vii) χpde (Hn) = n+

⌈

n+1

2

⌉

, for n ≥ 3.
(viii) χpde (SFn) = 2, for n ≥ 2.
(ix) χpde (Bn) = n + 2, for n ≥ 3.
(x) χpde (Ln,m) = n, for n ≥ 2, m ≥ 1.
(xi) χpde (Tm,n) = 3, for n ≥ 1, m ≥ 3.
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(xii) χpde (Sn) = 3, for n ≥ 5.
(xiii) χpde (PNn) = 2, for n ≥ 3.

Proof. (i) Let G be a Path graph Pn with vertices v1, v2, . . . , vn. By
assigning colors 1 and 2 alternately to the vertices of G. Each vertex vi (odd
index) power dominates the color class 2, and each vertex vi (even index)
power dominates the color class 1. The result follows.
(ii) Let G be a Cycle graph Cn with vertices v1, v2, . . . , vn. Assign colors 1
and 2 alternately to the vertices of G. Each vertex vi, i odd, power dominates
the color class 2, and each vertex vi, i even, power dominates the color class
1. Hence, the proof obtains.
(iii) Let G be a Complete graph Kn with vertices v1, v2, . . . , vn. Assign dis-
tinct colors 1, 2, . . . , n to the vertices of G. Each vertex vi power domi-
nates its own color class, ensuring a power dominator equitable coloring with
χpde(Kn) = n.
(iv) Let G be a Wheel Graph Wn with n ≥ 4. The vertices of Wn consist
of a cycle with n − 1 rim vertices labeled v1, v2, . . . , vn−1 in the clockwise
sense and a central vertex (hub) denoted as vn. Then vi power dominates
v1, v2, . . . , vn,∀i, 1 ≤ i ≤ n. When n = 4, assign color 1 to the hub and colors
2,3,4 to vertices v1, v2, v3 respectively. This ensures that each vertex power
dominates its own color class. Hence, χpde(Wn) = 4. When n ≥ 5, assign
color 1 to the hub and to satisfy equitable coloring pair the remaining non
adjacent rim vertices v1, v2, . . . , vn−1 in different color classes such that each
color class has at most two vertices. When n is odd, assign color i+1 to the
vertices vi and vi+n−1

2

, 1 ≤ i ≤ n−1

2
, inducing a color class of cardinality 2.

When n is even, assign color i+1 to the vertices vi and vi+n−2

2

, 1 ≤ i ≤ n−2

2
,

inducing a color class of cardinality 2 and color n
2
+1 to vertex vn−1 inducing

a color class of cardinality 1. Thus, χpde(Wn) = ⌊n
2
⌋+ 1. See Figure 1. This

assignment ensures that each vertex power dominates its own colors, and the
hub vertex power dominates all the rim vertices. Hence, the proof obtains.
Similar arguments lead to the rest of the results.

3 Conclusion

It would be an interesting line of research to explore the power dominator
equitable coloring problem in hypercubes and butterfly networks.
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