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Abstract

In this paper, we explore the extensions of Pell and Pell-Lucas
polynomials known as (s, t)-Pell and (s, t)-Pell-Lucas polynomials. We
introduce the 2 × 2 matrices denoted as A and B to facilitate our
investigation. By using these matrices, we derive various identities and
summation formulas for (s, t)-Pell and (s, t)-Pell-Lucas polynomials.

1 Introduction

For several years, many researchers have extensively investigated numerous
polynomial sequences. The most famous polynomials are Fibonacci, Lucas,
Pell, and Pell-Lucas polynomials which are also renowned for their diverse
range of remarkable properties and wide-ranging applications in mathemat-
ics, physics, and computer science [1, 2]. These polynomials have garnered
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substantial interest. Various authors have recently generalized and stud-
ied the Fibonacci, Lucas, Pell, and Pell-Lucas polynomials, as evidenced by
works such as [3, 4, 5, 6].

In 2021, Srisawat and Sriprad [6] introduced a generalization of the Pell
and Pell-Lucas polynomials as follows:
Let x be a real variable and let s and t be real numbers with s2x2 + t > 0,
s > 0, and t 6= 0. The (s, t)-Pell polynomials {Pn(s, t)(x)}∞n=0 and the (s, t)-
Pell-Lucas polynomial sequences {Qn(s, t)(x)}∞n=0 are defined respectively by

Pn(s, t)(x) = 2sxPn−1(s, t)(x) + tPn−2(s, t)(x), forn ≥ 2, (1.1)

Qn(s, t)(x) = 2sxQn−1(s, t)(x) + tQn−2(s, t)(x), forn ≥ 2, (1.2)

with the initial conditions P0(s, t)(x) = 0, P1(s, t)(x) = 1, and Q0(s, t)(x) =
2, Q1(s, t)(x) = 2sx. Notably, when s = 1

2
and t = 1, these sequences

yield the classical Fibonacci and Lucas polynomial sequences, while set-
ting s = t = 1 the classical Pell and Pell-Lucas polynomial sequences are
obtained. The characteristic equation of (1.1) and (1.2) are in the form
λ2 = 2sxλ + t, and the roots of this equation are α = sx +

√
s2x2 + t and

β = sx −
√
s2x2 + t. We note that α + β = 2sx, α − β = 2

√
s2x2 + t and

αβ = −t. Srisawat and Sriprad [6] also gave the Binet’s formulas and the
generating functions for these polynomials and obtained many identities of
these polynomials by using the Binet’s formula. We have [6] Pn+1(s, t)(x) +
tPn−1(s, t)(x) = Qn(s, t)(x), 2sxPn(s, t)(x) + 2tPn−1(s, t)(x) = Qn(s, t)(x),
and Qn+1(s, t)(x) + tQn−1(s, t)(x) = 4(s2x2 + t)Pn(s, t)(x), for all n ∈ N.

In this paper, we determine the 2×2 A-matrix and B-matrix. After that,
we establish some identities of (s, t)-Pell and (s, t)-Pell-Lucas polynomials by
using these matrices. For convenience and throughout this paper, we use the
symbols Pn(x) and Qn(x) instead of Pn(s, t)(x) and Qn(s, t)(x), respectively.

2 Main results

In this section, we establish some identities of (s, t)-Pell and (s, t)-Pell-Lucas
polynomials by using the 2× 2 A-matrix and B-matrix define as follows:

A =

[

2sx t

1 0

]

and B =

[

2sx 2t
2 −2sx

]

, (2.3)

where s, x, t are defined as in (1.1) and (1.2).
By using the A-matrix, we get the following lemma.
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Lemma 2.1. Let A be a matrix as in (2.3). Then

An =

[

Pn+1(x) tPn(x)
Pn(x) tPn−1(x)

]

, for all n ∈ N.

Proof. The proofs follow by induction on n.

Next, by using the A-matrix and B-matrix, we get the following lemma:

Lemma 2.2. Let A,B be matrices as in (2.3). Then

AnB = BAn =

[

Qn+1(x) tQn(x)
Qn(x) tQn−1(x)

]

, for all n ∈ N.

Proof. By Lemma 2.1, we have An =

[

Pn+1(x) tPn(x)
Pn(x) tPn−1(x)

]

. Clearly,

AnB = BAn =

[

Qn+1(x) tQn(x)
Qn(x) tQn−1(x)

]

.

In the following two theorems, we get the well-known Binet formulas and
Cassini’s identities by using theA-matrix, B-matrix, Lemma 2.1, and Lemma 2.2.

Theorem 2.3 (Binet’s Formulas). Let n ∈ N. Then

Pn(x) =
αn − βn

α− β
and Qn(x) = αn + βn,

where α, β are roots of the characteristic equation λ2 − 2sxλ − t = 0 and
α > β.

Proof. Let A,B be the matrices as in (2.3). Then the characteristic polyno-
mial of A is f(λ) = det(A− λI) = λ2 − 2sxλ− t, and the eigenvalues for A
are α = sx+

√
s2x2 + t and β = sx −

√
s2x2 + t. Also, the eigenvectors for

A corresponding to the eigenvalues α and β are

[

α

1

]

and

[

β

1

]

, respectively.

Let W =

[

α β

1 1

]

. Then D = W−1AW is a diagonal matrix. This implies

that A = WDnW−1 and so An = WDnW−1. Then

An =
1

α− β

[

αn+1 − βn+1 t(αn − βn)
αn − βn t(αn−1 − βn−1)

]

. (2.4)
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By Lemma 2.1, we have An =

[

Pn+1(x) tPn(x)
Pn(x) tPn−1(x)

]

. Thus

[

Pn+1(x) tPn(x)
Pn(x) tPn−1(x)

]

=
1

α− β

[

αn+1 − βn+1 t(αn − βn)
αn − βn t(αn−1 − βn−1)

]

.

It follows that

Pn(x) =
αn − βn

α− β
.

By (2.4), we have

AnB =
1

α− β

[

αn+1 − βn+1 t(αn − βn)
αn − βn t(αn−1 − βn−1)

] [

2sx 2t
2 −2sx

]

. (2.5)

By (2.5) and Lemma 2.2, we obtain

[

Qn+1(x) tQn(x)
Qn(x) tQn−1(x)

]

=

[

αn+1 + βn+1 t(αn + βn)
αn + βn t(αn−1 + βn−1)

]

.

Consequently,
Qn(x) = αn + βn.

Theorem 2.4 (Cassini’s Identities). Let n ∈ N. Then

(1) Pn+1(x)Pn−1(x)−P2
n
(x) = −(−t)n−1.

(2) Qn+1(x)Qn−1(x)−Q2
n
(x) = 4(s2x2 + t)(−t)n−1.

Proof. Let A,B be the matrices as in (2.3). By Lemma 2.1 and the property
det(An) = (det(A))n, we get (1). In a similar way, by Lemma 2.2 and the
property det(BAn) = det(B)(det(A))n, we obtain (2).

Furthermore, by using A-matrix, B-matrix, Lemma 2.1, and Lemma 2.2, we
get some exciting identities, as in Theorems 2.5 and 2.7.

Theorem 2.5. Let m,n ∈ N. Then the following results hold:

(1) Pm+n(x) = Pm(x)Pn+1(x) + tPm−1(x)Pn(x).

(2) Qm+n(x) = Pn+1(x)Qm(x) + tPn(x)Qm−1(x).

(3) (−t)n−1Pm−n(x) = Pm−1(x)Pn(x)−Pm(x)Pn−1(x).

(4) (−t)n−1Qm−n(x) = Pn(x)Qm−1(x)− Pn−1(x)Qm(x).
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Proof. Let A,B be the matrices as in (2.3).
By Lemma 2.1 and the property that Am+n = AmAn, we get (1). By
Lemma 2.2 and the property that BAm+n = B(AmAn) = (BAm)An, we
get (2). The proof of (3) and (4) go on in the same fashion as (1) and (2)
by using the properties Am−n = Am(An)−1 and BAm−n = B(Am(An)−1) =
(BAm)(An)−1.

Putting m = n and m = n + 1 in Theorem 2.5, we obtain the following
corollary.

Corollary 2.6. Let n ∈ N. Then

(1) P2n(x) = Pn(x)Pn+1(x) + tPn−1(x)Pn(x).

(2) Q2n(x) = Pn+1(x)Qn(x) + tPn(x)Qn−1(x).

(3) P2n+1(x) = P2
n+1(x) + tP2

n
(x).

(4) Q2n+1(x) = Pn+1(x)Qn+1(x) + tPn(x)Qn(x).

Theorem 2.7. Let n ∈ N with 2sx+ t− 1 6= 0. Then

(1)
∑

n

k=0Pk(x) =
Pn+1(x)+tPn(x)−1

2sx+t−1
,

(2)
∑

n

k=0Qk(x) =
Qn+1(x)+tQn(x)−2+2sx

2sx+t−1
.

Proof. Let A,B be the matrices as in (2.3). It is known that I − An+1 =
(I − A)

∑

n

k=0A
k. Since det(I −A) = 1− 2sx− t 6= 0, we can write

(I − A)−1(I − An+1) =

n
∑

k=0

Ak, (2.6)

and we also obtain

(I −A)−1 =
1

1− 2sx− t

[

1 t

1 1− 2sx

]

. (2.7)

By Lemma 2.1, we get

I − An+1 =

[

1−Pn+2(x) −tPn+1(x)
−Pn+1(x) 1− tPn(x)

]

. (2.8)

From (2.7) and (2.8), we obtain

(I − A)−1(I − An+1) =

[

1−Pn+2(x)−tPn+1(x)
1−2sx−t

t−tPn+1(x)−t
2Pn(x)

1−2sx−t

1−Pn+2(x)−(1−2sx)Pn+1(x)
1−2sx−t

−tPn+1(x)+(1−2sx)(1−tPn(x))
1−2sx−t

]

.

(2.9)
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From (2.6), (2.9) and Lemma 2.1, we get

n
∑

k=0

Pk(x) =
Pn+1(x) + tPn(x)− 1

2sx+ t− 1
.

From (2.6), we also have

(I −A)−1(I −An+1)B =
n

∑

k=0

AkB. (2.10)

Based on the same argument as above, result (2) is obtained by using (2.9),
(2.10), and Lemma 2.2. This completes the proof.
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