An Exponential Diophantine Equation
 $$
x^{2}+3^{a} 97^{b}=y^{n}
$$

S. Muthuvel, R. Venkatraman
Department of Mathematics
Faculty of Engineering and Technology
SRM Institute of Science and Technology, Vadapalani Campus
No. 1, Jawaharlal Nehru Salai
Vadapalani, Chennai-600026, Tamilnadu, India

email: muthushan15@gmail.com, ms3081@srmist.edu.in, venkatrr1@srmist.edu.in
(Received March 7, 2024, Accepted April 17, 2024, Published June 1, 2024)

Abstract

In this paper, we determine all positive integer solutions (x, y, n, a, b) of the equation $x^{2}+3^{a} 97^{b}=y^{n}$ for non-negative integers a and b under the condition that the non-negative integers x and y are relatively prime, $n \geq 3$.

1 Introduction

In recent years, many papers dealt with the Diophantine equation

$$
x^{2}+p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}=y^{n}, \quad n \geq 3, \quad \operatorname{gcd}(x, y)=1
$$

in non-negative integers $\left(x, y, \alpha_{1}, \ldots, \alpha_{k}\right)$, where $p_{i}^{\prime} s$ are fixed prime numbers. With the development of modern tools such as the Primitive Divisor Theorem, the modular approach, and the computational techniques, many authors investigated the above equation when $k \geq 1$. In particular, the cases $\left(p_{1}, p_{2}\right) \in\{(2,3),(3,41)\}$ were considered in $[3,1]$.

Key words and phrases: Diophantine equations, Integer solution, S-integers, Lucas sequence, Primitive divisor
AMS (MOS) Subject Classifications: 11D61, 11D59, 11 Y 50.
The corresponding author is R. Venkatraman.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

The Lucas pair, denoted as $(\eta, \bar{\eta})$, involves algebraic integers satisfying specific conditions. These pairs generate Lucas numbers through the formula $L_{n}(\eta, \bar{\eta})=\frac{\eta^{n}-\bar{\eta}^{n}}{\eta-\bar{\eta}}$. The existence of primitive divisors for these Lucas numbers is vital. A prime number p is considered a primitive divisor of $L_{n}(\eta, \bar{\eta})$ if $p \mid L_{n}(\eta, \bar{\eta})$ and $p \nmid(\eta-\bar{\eta})^{2} \prod_{i=1}^{n-1} L_{i}(\eta, \bar{\eta})$ for $n>1$. In addition, a primitive divisor q satisfies $q \equiv\left(\frac{(\eta-\bar{\eta})^{2}}{q}\right)(\bmod n)$, where $\left(\frac{*}{q}\right)$ denotes the Legendre symbol. For $n>4$ and $n \neq 6$, all n-th terms of Lucas sequences have primitive divisors, excluding specific values of $\eta, \bar{\eta}$, and $n[2]$.

3 Main Result

Theorem 3.1. For $n \geq 3, a, b \geq 0$, the only solutions of the equation

$$
\begin{equation*}
x^{2}+3^{a} 97^{b}=y^{n}, x, y \geq 1, \operatorname{gcd}(x, y)=1 \tag{3.1}
\end{equation*}
$$

are given by $(x, y, a, b) \in\{(1405096,12545,0,2),(530,79,7,1),(1144,115,7,1)$, $(48664,1555,15,1),(46,13,4,0),(730,109,4,2),(10,7,5,0),(3428,307,11,1)$, $(1034,103,5,1),(7730,391,5,1),(871680070,912511,11,3)\}$ when $n=3$ and $(x, y, a, b)=(48,7,0,1)$ when $n=4$.

Proof. The proof of the theorem will be investigated for cases of $n=3$, $n=4$, and $n \geq 5$ as follows:
Case 1: When $n=3$, let $a=6 a_{1}+i$ and $b=6 b_{1}+j$, where $i, j \in\{0,1, \ldots, 5\}$. Equation (3.1) transforms into the elliptic curve $L^{2}=M^{3}-3^{i} 97^{j}$ with $L=\frac{x}{3^{3 a_{1}} 97^{3 b_{1}}}$ and $M=\frac{y}{3^{2 a_{1}} 97^{2 b_{1}}}$. Therefore, we need to calculate all $\{3,97\}-$ integral points on 36 elliptic curves for each i and j. We use MAGMA to determine all the $\{3,97\}$ - integral points on the above elliptic curves satisfying $\operatorname{gcd}($ numerator (L), numerator $(M))=1$ and check for the desired solutions. All the solutions are $(x, y, a, b) \in\{(1405096,12545,0,2),(530,79,7,1)$, $(1144,115,7,1),(48664,1555,15,1),(46,13,4,0),(730,109,4,2),(10,7,5,0)$, $(3428,307,11,1),(1034,103,5,1),(7730,391,5,1),(871680070,912511,11,3)\}$.
Case 2: When $n=4$, let $a=4 \alpha_{1}+i$ and $b=4 \beta_{1}+j$, where $i, j \in\{0,1,2,3\}$. Equation (3.1) transforms into $A^{2}=B^{4}-3^{i} 97^{j}$, with $A=\frac{x}{3^{2 \alpha_{1}} 97^{2 \beta_{1}}}$ and $B=\frac{y}{3^{\alpha_{1}} 97^{\beta_{1}}}$. Identifying $\{3,97\}$-integral points on 16 quartic curves corresponds to finding integer solutions of Equation (3.1). Using SIntegralLjunggrenPoints, we determine all S-integral points on these curves, resulting in $(A, B, i, j)=(\mp 1,0,0,0),(\mp 7,48,0,1)$. Considering the condition on x and y, Equation (3.1) has a solution $(x, y, a, b)=(48,7,0,1)$.

Case 3: Now, suppose that $n \geq 5$. If there exists a solution for Equation (3.1) with $n=2^{k}$ and $k \geq 3$, it can be obtained from solutions with $n=4$ since $y^{2^{k}}=\left(y^{2^{k-2}}\right)^{4}$. Consequently, there are no solutions for (3.1) with $n=2^{k}$ and $k \geq 3$. Similarly, (3.1) has no solution for $n=3^{k}$ and $k \geq 2$. Hence, without loss of generality, n is an odd prime. Let's initiate the analysis of the factorization of Equation (3.1) in the field $K=Q(\sqrt{-d})$ as follows: $(x+e \sqrt{-d})(x-e \sqrt{-d})=y^{n}$ where $e=3^{\alpha} 97^{\beta}$ for some integers $\alpha, \beta \geq 0$ and $d \in\{1,3,97,291\}$. Assuming that y is even leads to a contradiction as x must be odd according to (3.1) and so $1+3^{\alpha} \equiv 0(\bmod 8)$. As a result, y is an odd integer and therefore the ideals formed by $(x+e \sqrt{-d})$ and $(x-e \sqrt{-d})$ are relatively prime in K. The class number $h(K)$ takes on one of two values 1 or 4 for the choice of d. Thus, we can deduce that $\operatorname{gcd}(n, h(d))=1$. Since $d \not \equiv 3(\bmod 4)$ and n is also coprime to the order of the unit group of \mathcal{O}_{K}, we can write

$$
x+e \sqrt{-d}=\xi^{n}=(s+t \sqrt{-d})^{n}, \quad x-e \sqrt{-d}=\bar{\xi}^{n}=(s-t \sqrt{-d})^{n}
$$

and $y=s^{2}+d t^{2}$ for some rational integers s and t. By analyzing these equations, we can derive that $e=L_{n} t$, where $L_{n}=\frac{\xi^{n}-\bar{\xi}^{n}}{\xi-\bar{\xi}}$. Notably, the sequence L_{n} is a Lucas sequence. The Lucas sequences without primitive divisors are explicitly enumerated in [2], and it is confirmed that L_{n} doesn't match any of them. Consequently, we delve into the possibility that a primitive divisor may exist for L_{n}. Assume q is any primitive divisor of L_{n}. In this case, q is either 3 or 97 . Considering that any primitive divisor $q \equiv \pm 1(\bmod n)$, we rule out the possibility $q=3$ given that $n \geq 5$. Thus, we continue with $q=97$. According to the definition of a primitive divisor, $q \nmid(\xi-\bar{\xi})^{2}=-4 d t^{2}$, indicating that $d=1$. Moreover, since $\left(\frac{-4 t^{2}}{q}\right)=\left(\frac{-1}{97}\right)=1$, we deduce that $97 \equiv 1(\bmod n)$. Since the only possible values for n are 2 and 3 , this contradicts the assumption made in case 3 . Consequently, no such n exists for $n \geq 5$. This completes the proof.

References

[1] M. Alan, U. Zengin, On the Diophantine equation $x^{2}+3^{a} 41^{b}=y^{n}$, Period. Math. Hung., 81, (2020), 284-291.
[2] Y. Bilu, G. Hanrot, P.M. Voutier, (with an Appendix by M. Mignotte), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, (2001), 75-122.
[3] F. Luca, On the equation $x^{2}+2^{a} 3^{b}=y^{n}$, Int. J. Math. Math. Sci., 29, no. 3, (2002), 239-244.

