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Abstract

We develop the notion of a generalized inverse of a linear relation
and obtain lower bounds for the minimum modulus of such inverses
which arise out of certain perturbations. These lower bounds are used
to obtain norm bounds for such generalized inverses.

1 Introduction

Let H1 and H2 be Hilbert spaces over the same field of scalars and consider
the fundamental problem of solving the multivalued operator inclusion b ∈
T x where b ∈ H2 and T : H1 → H2 is a multivalued operator with closed
range. In the event that this inclusion has no solution x, it is still possible
to assign the best possible solution to the problem. In such a case, it is
reasonable to consider as a generalized solution of this inclusion any solution
u in H1 of the inclusion Pb ∈ T x where P is the projection of H2 onto the
range of T . Another natural approach to assigning generalized solutions to
the inclusion b ∈ T x is to find a u ∈ H1 which comes closest to solving
this inclusion in the sense that dist (b, T u) ≤ dist (b, T x) for any x in the
domain of T . We consider such generalized solutions and use them to develop
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the theory of generalized inverses for multivalued operators, including norm
bounds for such inverses arising out of small perturbations.

In all that follows,H , H1, and H2 will be Hilbert spaces and any linear
subset T of H1 ×H2 will be called a linear relation (or a multivalued linear
operator) from H1 to H2. We say that T is closed if it is closed as a subspace
of H1 × H2. The domain D(T ), range R(T ), null space N(T ), and graph
G(T ) of a linear relation T are defined by

D(T ) := {x ∈ H1 : (x, y) ∈ T for some y ∈ H2} ,
R(T ) := {y ∈ H2 : (x, y) ∈ T for some x ∈ H1} ,
N(T ) := {x ∈ D(T ) : (x, 0) ∈ T} ,
G(T ) := {(x, y) ∈ H1 ×H2 : x ∈ D(T ) and (x, y) ∈ T}

If x ∈ D(T ) we define T x to be the set T x := {y ∈ R(T ) : (x, y) ∈ T } and
G(T −1) := {(y, x) : (x, y) ∈ G(T )}. Hence N(T ) = T −1(0).

Let LR (H1, H2) and CLR (H1, H2) denote the collection of all linear re-
lations and that of closed linear relations from H1 to H2 respectively. Then
T ∈ LR (H1, H2) if for any x, z ∈ D(T ) and any nonzero α ∈ C,

T x+ T z = T (x+ z) and αT x = T (αx),

where these equalities are understood to be set equalities. It is well known
that if T ∈ LR (H1, H2) then y ∈ T (x) if and only if T (x) = T (0) + y [1].
For S, T ∈ LR (H1, H2), we define (T + S)x := {y + z : y ∈ T x, z ∈ Sx}.

By BH we mean the set BH := {x ∈ H : ‖x‖ ≤ 1}. For a closed linear
subspace E of H , we denote by QE the natural quotient map with domain
H and null space E. For T ∈ LR (H1, H2), we shall denote QT (0) by QT . It

is well known that for T ∈ LR (H1, H2), the operator QT T is single valued
[1]. For T ∈ LR (H1, H2), we set ‖T x‖ = ‖QT T x‖ for x ∈ D(T ) and
‖T ‖ = ‖QT T ‖. We say that T is bounded if ‖T ‖ < ∞ and denote the
collection of all such T by BLR (H1, H2). We note that if T (0) ⊃ S(0) then
‖T x+ Sx‖ ≥ ‖T x‖ − ‖Sx‖ [5].

If x is an element of H and M is a closed linear subspace of H , then the
distance dist(x,M) between x and M is defined by dist(x,M) = inf

y∈M
‖x−y‖.

If PM is the orthogonal projection ofH ontoM , then dist(x,M) = ‖x−PMx‖.
The quantity γ(T ) = inf

{
‖T z‖ : z ∈ D(T ) ∩N(T )⊥, ‖z‖ = 1

}
is called

the minimum modulus of the linear relation T . Note that γ(QT ) = γ(T ) for
T ∈ CLR (H1, H2) [1] and that γ(T ) > 0 if and only if R(T ) is closed [5].

Let H ′ denote the collection of all bounded linear functionals on a Hilbert
space H . For M ⊂ H , let M⊤ := {f ∈ H ′ : f(m) = 0 for all m ∈ M} and
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let M⊥ := {x ∈ H : 〈x,m〉 = 0 for all m ∈ M} . If T ∈ LR (H1, H2) and we
view H1 and H2 as Banach spaces, then we define the Banach space adjoint
T ′ of T to be T ′ ∈ LR(H ′

2, H
′
1) defined by

(f, g) ∈ G (T ′) if and only if f(y) = g(x) for all (x, y) ∈ G(T ).

The Hilbert space adjoint T ∗ of T is defined by

(h, k) ∈ G (T ∗) if and only if 〈y, h〉 = 〈x, k〉 for all (x, y) ∈ G (T ) .

We see that for T ∈ LR (H1, H2), T
′(0) = D (T )⊤, T ∗(0) = D (T )⊥, and

N(T ∗) = R(T )⊥.

Let Ĥ2 := H ′
2/T

′(0) and H̃2 := H2/T
∗(0) and consider the cosets f̂z :=

fz + T ′(0) and z̃ := z + T ∗(0), where z ∈ H2 and fz ∈ H ′
2 are related by

fz(x) = 〈x, z〉 for x ∈ H2. We observe from

w ∈ z̃ ⇔ w − z ∈ T ∗(0) ⇔ 〈x, w − z〉 = 0 ∀x ∈ D(T )

⇔ 〈x, w〉 = 〈x, z〉 ∀x ∈ D(T ) ⇔ fw(x) = fz(x) ∀x ∈ D(T )

⇔ (fw − fz) (x) = 0 ∀x ∈ D(T ) ⇔ fw − fz ∈ D(T )⊤ = T ′(0)

⇔ fw ∈ f̂z.

that fw ∈ f̂z if and only if w ∈ z̃.

Lemma 1.1. Let T ∈ LR (H1, H2) be closed and bounded. Then the equali-
ties γ (T ′) = γ (T ∗) and ‖T ′‖ = ‖T ∗‖ hold.

Proof. Let f̂z and z̃ be the cosets defined above. The equality ‖fz‖ = ‖z‖

and the observation that fw ∈ f̂z if and only if w ∈ z̃ imply that
∥∥∥f̂z

∥∥∥ = ‖z̃‖.

If w, z ∈ H2 then we have that fw(y) = fz(x) for all (x, y) ∈ G(T ) if and only
if 〈y, w〉 = 〈x, z〉 for all (x, y) ∈ G(T ). It therefore follows that fz ∈ T ′fw if

and only if z ∈ T ∗w. This observation together with the equality
∥∥∥f̂z

∥∥∥ = ‖z̃‖

imply that for any z ∈ H2,
∥∥QT ′T ′fz

∥∥ = ‖QT ∗T ∗z‖ and sup
fz∈D(T ′)

‖fz‖=1

∥∥QT ′T ′fz
∥∥ = sup

z∈D(T ∗)
‖z‖=1

‖QT ∗T ∗z‖ . (1.1)

The first and second equalities in the lemma then follow from the first and
second equalities in (1.1).

See [1, Theorems II. 3.2, III. 1.4, III. 4.6] for the equalities.

T ∗(0) = D(T )⊥, D (T ∗) = T (0)⊥, γ(T ) = γ (T ∗) , & ‖T ‖ = ‖T ∗‖ .
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Lemma 1.2. [2] Let H1 and H2 be Hilbert spaces and let T : H1 → H2 be
a bounded linear operator having closed range. Then there exists a constant
m > 0 such that ‖Tx‖ ≥ m‖x‖ for all x ∈ N(T )⊥, where N(T ) denotes the
null space of T .

2 Main results

2.1 The generalized inverse of a bounded linear rela-

tion

Theorem 2.1. Let T ∈ BLR (H1, H2) be such that R(T ) is closed and let
P denote the projection of H2 onto R(T ). Let b ∈ H2. Then the following
conditions on u ∈ H1 are equivalent.

(i) Pb ∈ T u, (ii) ‖z − b‖ = dist (b, R(T )) ∀z ∈ T u, (iii) T ∗T u ∩ T ∗b 6= ∅.

Proof. (i)−→(ii): Suppose that Pb ∈ T u. Since Pb−b ∈ R(T )⊥, we see that
for any y ∈ R(T ),

‖y − b‖2 = ‖y − Pb‖2 + ‖Pb− b‖2 ≥ ‖Pb− b‖2

= ‖z − b‖2 (where z = Pb ∈ T u).

Equality in (ii) then follows from the definition of dist (b, R(T )) and the fact
that z ∈ T u ⊂ R(T ).
(ii)−→(iii): Suppose that ‖z − b‖ = dist (b, R(T )) for some z ∈ T u. Since
Pb ∈ R(T ), it follows that

‖z − b‖2 = ‖z − Pb‖2 + ‖Pb− b‖2 ≥ ‖z − Pb‖2 + ‖z − b‖2

and that z = Pb. Hence z − b = Pb − b ∈ R(T )⊥ = N(T ∗) so that
0 ∈ T ∗(z − b) = T ∗z − T ∗b. This means that T ∗T u ∩ T ∗b 6= ∅.
(iii)−→(i) If (iii) holds then 0 ∈ T ∗T u− T ∗b. This implies that there exists
an element u′ ∈ T u such that 0 ∈ T ∗u′ − T ∗b = T ∗(u′ − b). This means
that T ∗(u′ − b) = T ∗(0) and that u′ − b ∈ N(T ∗) = R(T )⊥ and therefore
0 = P (u′ − b) = u′ − Pb. It therefore follows that Pb ∈ T u.

Definition 2.2. A vector u ∈ D(T ) which satisfies the equivalent conditions
(i)-(iii) of Theorem 2.1 will be called a least squares solution of the inclusion

b ∈ T x. (2.2)
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Note that since R(T ) is closed, a least squares solution of inclusion (2.2)
exists for each b ∈ H2. If N(T ) 6= {0}, then there are many least squares
solutions of the inclusion (2.2) since if u is a least squares solution then so is
u+ v for any v ∈ N(T ).

Lemma 2.3. The set M = {u : u is a least squares solution of b ∈ T x} is
closed and convex for every T ∈ BLR (H1, H2).

Proof. To show that M is convex, let α ∈ [0, 1] and let u1, u2 ∈ M . The
linearity of T implies that

T (αu1 + (1− α)u2) = T (αu1) + T ((1− α)u2) = αT u1 + T u2 − αT u2

∋ αPb+ Pb− αPb = Pb,

showing that αu1 + (1 − α)u2 ∈ M and that M is convex. To show that M
is closed, let (un) be a sequence in M such that un → u ∈ D(T ). Then

‖QT un −QT u‖ = ‖QT (un − u)‖ = ‖T (un − u)‖

≤ ‖T ‖‖un − u‖ −→ 0 as n → ∞.

Since Pb ∈ T un ∀n, we see that QT un = Q(Pb) = lim
n→∞

QT un = QT u, that

is, QT (un − u) = 0. It follows from here that for each n ∈ N, T un − T u =
T (un − u) = T (0). This means that T un ∩ T u 6= ∅. Hence T un = T u for
each n ∈ N. The result then follows immediately.

We would like to invert T ∈ BLR (H1,H2), by associating each b ∈ H2 with
some uniquely determined least squares solution u ∈ H1. By Lemma 2.3, the
set M of all least squares solutions of the inclusion (2.2) is closed and convex
and therefore has a unique element of minimal norm. We use this vector of
minimal norm to define the generalized inverse of T .

Definition 2.4. Let T ∈ BLR (H1,H2) be such that R(T ) is closed. The
relation T † from H2 to H1 defined by

T †b = u+ T −1(0) (2.3)

where u is the least squares solution of minimum norm of the inclusion (2.2)
is called the generalized inverse of T .

Theorem 2.5. Let T ∈ BLR (H1, H2) be such that R(T ) is closed. Then

R
(
T †

)
⊂ N (T )⊥ . (2.4)
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Proof. Let b ∈ H2 and let z ∈ T †b. Then z = u + v where v ∈ T −1(0) and
u = u1 + u2 ∈ N(T )⊥ ⊕ N(T ) is the least squares solution of the inclusion
b ∈ T x of minimal norm. From the definition of T †, we see that

Pb ∈ T u = T (u1 + u2) = T u1 + T u2 = T u1 + T (0) = T u1.

This shows that u1 is a least squares solution of (2.2). If u2 6= 0, then
‖u1‖

2 < ‖u1‖
2 + ‖u2‖

2 = ‖u‖2, contradicting the fact that u is the least
squares solution of minimal norm. Hence u = u1 ∈ N (T )⊥.

Corollary 2.6. Let T ∈ BLR (H1, H2) be such that R(T ) is closed. Then
T † ∈ BLR (H2, H1).

Proof. Let T †b1 = u1+T −1(0) and T †b2 = u2+T −1(0) where b1, b2 ∈ H2

and u1 and u2 are least squares solutions (of minimal norm) of the inclusions
b1 ∈ T x and b2 ∈ T x respectively. It follows from the linearity of T −1(0) that
u1 ∈ T †b1 and that u2 ∈ T †b2. Since u1 and u2 are least squares solutions of
the inclusions b1 ∈ T x and b2 ∈ T x respectively, it follows that Pb1 ∈ T u1

and that Pb2 ∈ T u2. Hence

P (b1 + b2) = Pb1 + Pb2 ∈ T u1 + T u2 = T (u1 + u2) . (2.5)

Let T † (b1 + b2) = w + T −1(0) where w is the least squares solution of the
inclusion b1 + b2 ∈ T x of minimum norm. Then

P (b1 + b2) ∈ T w. (2.6)

It follows from (2.5) and (2.6) that T ([u1 + u2]− w) = T (0) and so, u1 +
u2 − w ∈ N(T ). Since u1 + u2 − w ∈ R

(
T †

)
⊂ R (T ∗) = N(T )⊥, it follows

that u1 + u2 − w = 0, that is, u1 + u2 = w. This equality together with the
linearity of T −1(0) imply that T †b1 + T †b2 = T † (b1 + b2).

We now consider the vector αb where b ∈ H2 and α is an arbitrary but
fixed scalar. Let

T †(αb) = v + T −1(0) (2.7)

where v is a least squares solution of minimal norm to the inclusion αb ∈ T x.
Then

αPb = P (αb) ∈ T v. (2.8)

Similarly, let

T †(b) = s+ T −1(0) (2.9)
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where s is a least squares solution of minimal norm to the inclusion b ∈ T x.
Then

Pb ∈ T s. (2.10)

The linearity of T together with (2.10) imply that

αPb ∈ T (αs). (2.11)

From (2.8) and (2.11), we conclude that T (v − αs) = T (0) and that

v − αz ∈ N(T ). (2.12)

Since v − αz ∈ N(T )⊥, (2.12) implies that v − αz = 0, that is,

v = αz. (2.13)

Combining (2.7), (2.9), and (2.13) we obtain

T †(αb) = v + T −1(0) = αv + T −1(0) = αT †(b),

which completes the prove that T † is linear.
For boundedness, we first note QT T is a bounded linear operator with

closed range since T is linear and bounded with closed range. Let T †b =
u + T −1(0) where b ∈ H2. Since u ∈ T †b ∈ R(T †) and N (QTT ) = N(T ),
we see from Lemma 1.2 and Theorem 2.5 that there exists a constant α > 0
such that

‖QT T u‖ ≥ α‖u‖. (2.14)

Since ‖u‖ ≥ ‖ũ‖ where ũ = u + N(T ) is the quotient class of u in the
complete space H1/N(T ) = H1/T

†(0), we see from (2.14) that

‖QT T u‖ ≥ α‖QT †u‖ = α‖QT †T †b‖,

that is, ‖QT T u‖ ≥ α‖QT †T †b‖. Since Pb ∈ T u, it follows that ‖b‖ ≥
‖Pb‖ ≥ ‖QT T u‖ ≥ α‖QT †T †b‖, and hence T † is bounded.

Lemma 2.7. Let T ∈ BLR (H1, H2). If R(T ) is closed, then T † ∈ BLR (H2, H1)
is a generalized inverse of T if and only if

T †z = w + T −1(0) for w ∈ N(T )⊥ ∩D(T ) and all z ∈ T w (2.15)

and
T †y = T −1(0) = N(T ) for y ∈ R(T )⊥. (2.16)
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Proof. Suppose that (2.15) and (2.16) hold and let b ∈ H2 with decomposi-
tion

b = u+ v ∈ R(T )⊕ R(T )⊥. (2.17)

Then
T †b = T †u+ T †v = T †u+ T −1(0). (2.18)

Since u ∈ R(T ), u ∈ T (u1 + u2) for some u1 ∈ N(T )⊥ and u2 ∈ N(T ), it
follows from T (u1 + u2) = T u1 + T u2 = T u1 + T (0) = T u1 that

u ∈ T u1 for some u1 ∈ N(T )⊥. (2.19)

It therefore follows from (2.15), (2.18) and the linearity of T −1(0) that

T †b = T †u+ T −1(0) = u1 + T −1(0). (2.20)

Equality (2.17) and inclusion (2.19) imply that

Pb ∈ T u1 (2.21)

and that u1 is a least squares solution of the inclusion b ∈ T x. It remains
to show that u1 is the least squares solution of minimal norm. To do this,
assume that z is another least squares solution of the inclusion b ∈ T x.
Then z − u1 ∈ N(T ) and so u1 ⊥ (z − u1). It therefore follows from z =
u1 + (z − u1) and that ‖u1‖ ≤ ‖u1‖+ ‖z − u1‖ = ‖z‖. This shows that u1 is
the least squares solution of the inclusion b ∈ T x of minimal norm and that
T † is the generalized inverse of T .

Now, assume that T † is the generalised inverse of T . If y ∈ R(T )⊥ then
Py = 0 ∈ T (0) and therefore T †y = 0+T −1(0) = T −1(0) since 0 is the least
squares solution of the inclusion y ∈ T x of minimal norm. Hence, (2.16)
holds. Now, suppose that w ∈ N(T )⊥ ∩D(T ) and let z ∈ T w. Then

T †z = v + T −1(0) (2.22)

where v is the least squares solution of the inclusion z ∈ T x of minimal norm.
Since z ∈ R(T ) and v is a least squares solution of the inclusion z ∈ T x, it
follows that z ∈ T v. Since z ∈ T w and z ∈ T v, we see that

w + T −1(0) = T −1(z) = v + T −1(0). (2.23)

It follows from (2.22) and (2.23) that T †z = w + T −1(0) so that (2.15)
holds.
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Lemma 2.8. Let T ∈ CLR (H1, H2) be such that 0 < γ(T ) < ∞. Then the
equality

∥∥T †
∥∥ = γ(T )−1 holds.

Proof. Let D(T ) = N(T )⊥ ∩ D(T ). The definition of T † together with
Lemma 2.7 imply that

∥∥∥T †
∥∥∥ = sup

y∈H2, ‖y‖=1

∥∥∥T †y
∥∥∥ = sup

y∈R(T ), ‖y‖=1

∥∥∥T †y
∥∥∥ = sup

z∈R(T ), ‖z‖6=0

∥∥T †z
∥∥

‖z‖

= sup
06=w∈D(T )

z∈T w

{
dist (w,N(T ))

‖z‖

}
= sup

06=w∈D(T )

ẑ∈T w fixed





‖w‖

inf
z0∈T (0)

‖ẑ + z0‖





= sup
06=w∈D(T )

{
‖w‖

‖T w‖

}
=

(
inf

06=w∈D(T )

{
‖T w‖

‖w‖

})−1

=


 inf

x∈D(T )

‖x‖=1

‖T x‖




−1

= γ(T )−1.

2.2 Norm bounds for the generalized inverse

In this section we establish norm bounds for the generalized inverse of a
perturbed linear relation. For subspaces M and N of a Hilbert space H ,
define SM by SM := {x ∈ M : ‖x‖ = 1} and consider the quantities

δ(M,N) = supx∈SM
dist(x,N), δ̂(M,N) = supx∈SM

dist(x, SN ), and

δ̂T (M,N) = sup
x∈D(T )∩SM

dist (x,D(T ) ∩ SN) .

We see from the inequality dist (z, SW ) ≤ 2 dist (z,W ), which holds for all

z ∈ SH [4], that the inequalities δ̂T (M,N) ≤ 2 δT (M,N) and δ̂(M,N) ≤
2δ(M,N) also hold.

Lemma 2.9. Let H1, H2 be Hilbert spaces and let S, T ∈ CLR (H1, H2) be
such that D(S) ⊃ D(T ), S(0) ⊂ T (0), and 0 < γ(T ) < ∞. Consider the
perturbation T̆ := T + S of T by S. Then

γ(T̆ ) ≥ γ(T )− 2‖T ‖δ
(
R(T̆ ), R(T )

)
− ‖S‖ (2.24)

and
γ(T̆ ) ≥ γ(T )− 2‖T ‖δ

(
N(T̆ ), N(T )

)
− ‖S‖. (2.25)
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Proof. To prove (2.24), we first note that D(S∗) ⊃ D(T ∗) and S∗(0) ⊂ T ∗(0)
since D(S∗) = S(0)⊥, D(T ∗) = T (0)⊥ and S∗(0) = D(S)⊥, T ∗(0) = D(T )⊥.
Let D(T ) := D(T ) ∩ SN(T )⊥ and let z ∈ D(T̆ ∗). Then given ε > 0, there
exists w ∈ D(T ∗) such that ‖z − w‖ ≤ dist (z,D(T ∗)) + ε. Note that
D(T ∗) := D(T ∗) ∩ SN(T ∗)⊥ is nonempty since 0 < γ(T ) = γ (T ∗) < ∞ and
so D (T ∗) 6⊂ N (T ∗). Hence

‖T ∗z‖ = ‖T ∗(w + z − w)‖ = ‖T ∗w + T ∗(z − w)‖

≥ ‖T ∗w‖ − ‖T ∗(z − w)‖ ≥ γ(T )− ‖T ∗(z − w)‖

≥ γ(T )− ‖T ∗‖‖(z − w)‖ ≥ γ(T )− ‖T ∗‖ [dist (z,D(T ∗)) + ε]

Since ε > 0 is arbitrary, it follows that

‖T ∗z‖ ≥ γ(T )− ‖T ∗‖ [dist (z,D(T ∗))]

≥ γ(T )− ‖T ∗‖ sup
z∈D(T̆ ∗)

{dist (z,D(T ∗))}

≥ γ(T )− ‖T ∗‖ δ̂T̆ ∗

(
N(T̆ ∗)⊥, N(T ∗)⊥

)
, since D(T̆ ∗) = D(T ∗)

≥ γ(T )− ‖T ∗‖ δ̂T̆ ∗

(
N(T̆ ∗)⊥, N(T ∗)⊥

)

≥ γ(T )− 2‖T ∗‖ δ
(
N(T̆ ∗)⊥, N(T ∗)⊥

)

= γ(T )− 2‖T ∗‖ δ
(
R(T̆ ), R(T )

)
(2.26)

and therefore

γ(T̆ ) = γ(T̆ ∗) = inf
z∈D(T̆ ∗)

∥∥∥T̆ ∗z
∥∥∥ = inf

z∈D(T̆ ∗)
‖T ∗z + S∗z‖

≥ inf
z∈D(T̆ ∗)

{‖T ∗z‖ − ‖S∗z‖} ≥ inf
z∈D(T̆ ∗)

{‖T ∗z‖} − ‖S∗‖

≥ γ(T )− 2‖T ∗‖ δ
(
R(T̆ ), R(T )

)
by (2.26)

= γ(T )− 2‖T ‖ δ
(
R(T̆ ), R(T )

)
.

Inequality (2.25) can be proved in a similar way with the help of the equality
δ(M,N) = δ

(
M⊥, N⊥

)
[4, IV Theorem 2.9].

Let S, T ∈ CLR (H1, H2) where H1 and H2 are Hilbert spaces and con-
sider the perturbation T̆ = T + S of T by S. We consider some norm
bounds for the generalized inverse T̆ † of T̆ . For ease of notation, we let

δN = δ
(
N(T̆ ), N(T )

)
and δR = δ

(
R(T̆ ), R(T )

)
.
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Theorem 2.10. Let H1 andH2 be Hilbert spaces and let S, T ∈ CLR(H1, H2)
be such 0 < γ(T ) < ∞ , dimN(T ) < ∞, D(S) ⊃ D(T ), S(0) ⊂ T (0), and
‖S‖ < γ(T ). Consider the perturbation T̆ = T + S of T by S.

(i) If 2δR‖T ‖+ ‖S‖ <
∥∥T †

∥∥−1
then ‖T̆ †‖ ≤

∥∥T †
∥∥

1− ‖T †‖ (2δR‖T ‖+ ‖S‖)
.

(ii) If 2δN‖T ‖+ ‖S‖ <
∥∥T †

∥∥−1
then ‖T̆ †‖ ≤

∥∥T †
∥∥

1− ‖T †‖ (2δN‖T ‖+ ‖S‖)
.

(ii) If either N(T̆ ) ⊆ N(T ) or R(T̆ ) ⊆ R(T ) then ‖T̆ †‖ ≤

∥∥T †
∥∥

1− ‖T †‖ ‖S‖
.

Proof. First we note that T̆ has closed range [5, Theorem 32] and therefore
the generalized inverse T̆ as defined by (2.3) exists. The results follow by

noting that
∥∥∥T̆ †

∥∥∥ = γ
(
T̆
)−1

and
∥∥T †

∥∥ = γ (T )−1 and using (2.24) to get

(i) and (2.25) to get (ii). Lastly, inequality (iii) follows from either (i) or
(ii) by noting that if N(T̆ ) ⊆ N(T ) then δN = 0 and if R(T̆ ) ⊆ R(T ) then

δR = 0 and that ‖S‖ < γ(T ) =
∥∥T †

∥∥−1
by hypothesis.

3 Conclusion

In this paper, we devoted out attention develop the theory of generalized in-
verses of linear relations, paying particular attention to linearity and bound-
edness. Some of our results are generalizations of similar results in the single
valued operator case. Many times one encounters problems in differential
equations and many areas of analysis where linear relations form a basic tool
for developing the necessary theory to study such a problem. For example,
the study of the spectral theory of non-densely defined ordinary differential
operators relies heavily on the theory of linear relations and their adjoints.
Our next focuss is going to be on applying the theory developed here to solve
some problem in other areas mathematics and related fields.
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