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Abstract

In this research study, we use elementary methods in number

theory to show that the Diophantine equations 11a + 10b = c
2 and

17a + 16b = c
2 are unsolvable in non-negative integers.

1 Introduction

A Diophantine equation f(x1, x2, . . . , xn) = 0 is solvable if there exists or-
dered n-tuple (x1, x2, . . . , xn) ∈ Z

n that satisfies the given equation. These
n-tuples are called its integer solutions. If no solution exists, the Diophan-
tine equation is said to be unsolvable. Diophantine analysis seeks to answer
whether a certain Diophantine equation is solvable or not.

Solvability of the equation of the form pa + (p − 1)b = c2 where p is a
prime has been explored by few researchers as can be seen in [1] and [2] . In
this study, we will show that the Diophantine equation pa + (p− 1)b = c2 is
unsolvable in non-negative integers when p = 11, 17.

2 Preliminaries

The following theorem and lemmas are needed for the main result.
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Theorem 2.1 (Mihailescu’s Theorem). [3] The quadruple (3, 2, 2, 3) is
the unique solution of the Diophantine equation xa− yb = 1 where a, b, x and
y are integers with min{a, b, x, y} > 1.

The following two lemmas are corollaries to Mihailescu’s Theorem:

Lemma 2.2. [4] The triple (3, 1, 2) is the unique non-negative integer solu-
tion of the Diophantine equation pa + 1 = c2 where p is an odd prime.

Lemma 2.3. The triple (3, 3, 3) is the unique non-negative integer solution
of the Diophantine equation 1 + (p− 1)b = c2 where p is a prime.

Proof. If b = 0, then c2 = 2 which has no integral solution. As a result,
b ≥ 1. It follows that c2 = 1 + (p− 1)b ≥ 1 + p− 1 = p > 1. Thus c > 1. If
b = 1, then c2 = p which is a contradiction. If b > 1, then by Mihailescu’s
Theorem, p = 3, b = 3 and c = 3. Thus, (3, 3, 3) is the unique solution to
1 + (p− 1)b = c2.

The next two lemmas can be proven easily using modular techniques.

Lemma 2.4. The square of an odd integer is congruent to 1 (mod 8).

Lemma 2.5. The square of an odd integer is congruent to 1 or 3 (mod 6).

3 Main Results

Here, we discuss the main findings of our study.

Theorem 3.1. The Diophantine equation 11a+10b = c2 has no solution for
non-negative integers.

Proof. If a = 0 or b = 0, then we have the Diophantine equations 1+10b = c2

and 11a + 1 = c2 which have no non-negative solutions by Lemmas 2.3 and
2.2, respectively.

If a, b > 0, then c is odd. Now, note that 11a ≡ 5 (mod 6) for odd integer
a and 11a ≡ 1 (mod 6) for even integer a. Also, 10b ≡ 4 (mod 6) for any
positive integer b. Since c2 ≡ 1, 3 (mod 6) by Lemma 2.5, a must be odd.
Note also that 11a ≡ 3 (mod 8) for odd integer b and 10b ≡ 2 (mod 8) for
b = 1, 10b ≡ 4 (mod 8) for b = 2 and 10b ≡ 0 (mod 8) for b ≥ 3. Thus 11a +
10b ≡ 3, 5, 7 (mod 8). This is a contradiction because c2 ≡ 1 (mod 8).

Theorem 3.2. The Diophantine equation 17a+16b = c2 has no solution for
non-negative integers.
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Proof. To get a contradiction, suppose that there are non-negative integers
a, b and c such that 17a + 16b = c2. If a = 0 or b = 0, then the Diophantine
equations 1 + 16b = c2 and 17a + 1 = c2 have no non-negative solutions by
Lemmas 2.3 and Lemma 2.2, respectively.

For a, b > 0, note that c2 − 16b = (c − 4b)(c + 4b) = 17a. It follows
that c − 4b = 17α and c + 4b = 17a−α, where a− α > α. Subtracting
the two equations gives 2 · 4b = 17a−α − 17α which can be expressed as
22b+1 = 17α(17a−2α − 1). Then α = 0 and 22b+1 = 17a − 1. If a = 1, then
22b+1 = 16 which yields b = 3/2, a contradiction to b being an integer. If
a > 1, then by Mihailescu’s Theorem, it has no solution.

4 Conclusion

Using modular arithmetic method, the factoring method, and Mihailescu’s
theorem we have shown that the Diophantine equations 11a + 10b = c2 and
17a + 16b = c2 have no non-integer solutions.
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