Unsolvability of Two Diophantine Equations of the Form $p^{a}+(p-1)^{b}=c^{2}$

William S. Gayo Jr., Venus D. Siong

Don Mariano Marcos Memorial State University
La Union, Philippines
email: wgayo@dmmmsu.edu.ph, vsiong@dmmmsu.edu.ph
(Received March 9, 2024, Accepted April 24, 2024,
Published June 1, 2024)

Abstract

In this research study, we use elementary methods in number theory to show that the Diophantine equations $11^{a}+10^{b}=c^{2}$ and $17^{a}+16^{b}=c^{2}$ are unsolvable in non-negative integers.

1 Introduction

A Diophantine equation $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ is solvable if there exists ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ that satisfies the given equation. These n-tuples are called its integer solutions. If no solution exists, the Diophantine equation is said to be unsolvable. Diophantine analysis seeks to answer whether a certain Diophantine equation is solvable or not.

Solvability of the equation of the form $p^{a}+(p-1)^{b}=c^{2}$ where p is a prime has been explored by few researchers as can be seen in [1] and [2]. In this study, we will show that the Diophantine equation $p^{a}+(p-1)^{b}=c^{2}$ is unsolvable in non-negative integers when $p=11,17$.

2 Preliminaries

The following theorem and lemmas are needed for the main result.
Key words and phrases: Diophantine equation, integer solutions, Mihailescu's Theorem, unsolvable.
AMS (MOS) Subject Classifications: 11D61.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Theorem 2.1 (Mihailescu's Theorem). [3] The quadruple (3, 2, 2, 3) is the unique solution of the Diophantine equation $x^{a}-y^{b}=1$ where a, b, x and y are integers with $\min \{a, b, x, y\}>1$.

The following two lemmas are corollaries to Mihailescu's Theorem:
Lemma 2.2. [4] The triple $(3,1,2)$ is the unique non-negative integer solution of the Diophantine equation $p^{a}+1=c^{2}$ where p is an odd prime.

Lemma 2.3. The triple $(3,3,3)$ is the unique non-negative integer solution of the Diophantine equation $1+(p-1)^{b}=c^{2}$ where p is a prime.

Proof. If $b=0$, then $c^{2}=2$ which has no integral solution. As a result, $b \geq 1$. It follows that $c^{2}=1+(p-1)^{b} \geq 1+p-1=p>1$. Thus $c>1$. If $b=1$, then $c^{2}=p$ which is a contradiction. If $b>1$, then by Mihailescu's Theorem, $p=3, b=3$ and $c=3$. Thus, $(3,3,3)$ is the unique solution to $1+(p-1)^{b}=c^{2}$.

The next two lemmas can be proven easily using modular techniques.
Lemma 2.4. The square of an odd integer is congruent to $1(\bmod 8)$.
Lemma 2.5. The square of an odd integer is congruent to 1 or $3(\bmod 6)$.

3 Main Results

Here, we discuss the main findings of our study.
Theorem 3.1. The Diophantine equation $11^{a}+10^{b}=c^{2}$ has no solution for non-negative integers.

Proof. If $a=0$ or $b=0$, then we have the Diophantine equations $1+10^{b}=c^{2}$ and $11^{a}+1=c^{2}$ which have no non-negative solutions by Lemmas 2.3 and 2.2 , respectively.

If $a, b>0$, then c is odd. Now, note that $11^{a} \equiv 5(\bmod 6)$ for odd integer a and $11^{a} \equiv 1(\bmod 6)$ for even integer a. Also, $10^{b} \equiv 4(\bmod 6)$ for any positive integer b. Since $c^{2} \equiv 1,3(\bmod 6)$ by Lemma $2.5, a$ must be odd. Note also that $11^{a} \equiv 3(\bmod 8)$ for odd integer b and $10^{b} \equiv 2(\bmod 8)$ for $b=1,10^{b} \equiv 4(\bmod 8)$ for $b=2$ and $10^{b} \equiv 0(\bmod 8)$ for $b \geq 3$. Thus $11^{a}+$ $10^{b} \equiv 3,5,7(\bmod 8)$. This is a contradiction because $c^{2} \equiv 1(\bmod 8)$.

Theorem 3.2. The Diophantine equation $17^{a}+16^{b}=c^{2}$ has no solution for non-negative integers.

Proof. To get a contradiction, suppose that there are non-negative integers a, b and c such that $17^{a}+16^{b}=c^{2}$. If $a=0$ or $b=0$, then the Diophantine equations $1+16^{b}=c^{2}$ and $17^{a}+1=c^{2}$ have no non-negative solutions by Lemmas 2.3 and Lemma 2.2, respectively.

For $a, b>0$, note that $c^{2}-16^{b}=\left(c-4^{b}\right)\left(c+4^{b}\right)=17^{a}$. It follows that $c-4^{b}=17^{\alpha}$ and $c+4^{b}=17^{a-\alpha}$, where $a-\alpha>\alpha$. Subtracting the two equations gives $2 \cdot 4^{b}=17^{a-\alpha}-17^{\alpha}$ which can be expressed as $2^{2 b+1}=17^{\alpha}\left(17^{a-2 \alpha}-1\right)$. Then $\alpha=0$ and $2^{2 b+1}=17^{a}-1$. If $a=1$, then $2^{2 b+1}=16$ which yields $b=3 / 2$, a contradiction to b being an integer. If $a>1$, then by Mihailescu's Theorem, it has no solution.

4 Conclusion

Using modular arithmetic method, the factoring method, and Mihailescu's theorem we have shown that the Diophantine equations $11^{a}+10^{b}=c^{2}$ and $17^{a}+16^{b}=c^{2}$ have no non-integer solutions.

References

[1] W. S. Gayo Jr., J. B. Bacani, On the solutions Diophantine equation $M^{x}+(M-1)^{y}=z^{2}$, Italian Journal of Pure and Applied Mathematics, 14, no. 2, (2022), 1113-1117.
[2] B. Sroysang, On the Diophantine equation $2^{x}+3^{y}=z^{2}$, Int. J. Pure Appl. Math., 84, no. 2, (2013), 133-137.
[3] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., no. 27, (2004), 167-195.
[4] A. Suvarnamani, On the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$, Int. J. Pure Appl. Math., 95, no. 4, (2014), 689-692.

