International Journal of Mathematics and Computer Science, **19**(2024), no. 4, 1147–1154

On Centrally-Extended Multiplicative (generalized)- (α,β) -Reverse Derivations in Semiprime Rings

Zahraa S.M. Alhaidary¹, Khatam AD. Zaghir², Raghad Al-Lami¹, Areej M. Abduldaim¹, Anwar Khaleel Faraj¹

¹Branch of Mathematics and Computer Applications Department of Applied Sciences University of Technology Baghdad, Iraq

> ²Mechanical Engineering Department University of Technology Baghdad, Iraq

email: zahraa.s.mohammed@uotechnology.edu.iq, khatam.a.zaghir@uotechnology.edu.iq, raghad.a.kareem@uotechnology.edu.iq, Areej.M.Abduldaim@uotechnology.edu.iq, Anwar.K.Faraj@uotechnology.edu.iq

(Received March 3, 2024, Accepted April 29, 2024, Published June 1, 2024)

Abstract

The aim of this paper is to examine the behavior of centrally- extended multiplicative (generalized)- (α,β) -reverse derivations by investigating various algebraic identities. These include $T(\mathfrak{mn}) \mp \beta(\mathfrak{n}) H(\mathfrak{m}) \in$ $Z, T(\mathfrak{mn}) \mp g(\mathfrak{n}) \alpha(m) \in Z$, and $T(\mathfrak{mn}) \mp g(\mathfrak{m}) \alpha(\mathfrak{n}) \in Z$ for any elements $\mathfrak{m}, \mathfrak{n}$ belonging to specific subsets of \mathbb{R} .

Key words and phrases: Derivation, Reverse Derivation, Centrally Extended Derivation, Multiplicative (Generalized)Derivation, Semiprime Ring.
AMS (MOS) Subject Classifications: 16N60, 47B47.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

1 Introduction

Let $Z(\mathbb{R})$ denote the center of a ring \mathbb{R} and let α , β be mappings of \mathbb{R} . For any e and f belonging to the ring \mathbb{R} , the commutator ef - fe is denoted by [e, f] [1]. A ring \mathbb{R} is considered semiprime if, whenever $e\mathbb{R}e = 0$, we have e = 0. A derivation D (for brevity) is an additive mapping defined for elements a and e in the ring \mathbb{R} , satisfying d(ae) = d(a)e + ad(e). An additive mapping \mathcal{F} of \mathbb{R} is called a generalized derivation GD (for brevity) associated with d if there exists a D mapping d of \mathbb{R} such that $\mathcal{F}(ae) = \mathcal{F}(a)e + ad(e)$, for all the elements a and e of \mathbb{R} [2]. Several mathematicians have developed and expanded this concept in different ways.

One of these extensions is the centrally-extended derivations CE-D (for brevity), introduced by Bell and Daif [3], who considered a mapping $v : \mathbb{R} \to \mathbb{R}$ such that $v(\mathfrak{m} + \mathfrak{n}) - v(\mathfrak{m}) - v(\mathfrak{n}) \in Z$ and $v(\mathfrak{mn}) - v(\mathfrak{mn}) - \mathfrak{m}v(\mathfrak{nn}) \in Z$ is true, for all the elements \mathfrak{m} and \mathfrak{n} of \mathbb{R} .

Moreover, in [4], this notion has been developed to centrally-extended (α,β) derivation CE- (α,β) -D (for brevity) containing other types of maps. A CE- (α,β) -D is a mapping v of \mathbb{R} that satisfies $v(\mathfrak{m} + \mathfrak{n}) - v(\mathfrak{m}) - v(\mathfrak{n}) \in Z$ and $v(\mathfrak{mn}) - v(\mathfrak{m})\alpha(\mathfrak{n}) - \beta(\mathfrak{m})v(\mathfrak{n}) \in Z$ holds for every $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}$. Furthermore, any map T of R that satisfies the conditions $T(\mathfrak{m} + \mathfrak{n}) - T(\mathfrak{m}) - T(\mathfrak{n}) \in Z$ and $T(\mathfrak{mn}) - T(\mathfrak{m})\alpha(\mathfrak{n}) - \beta(\mathfrak{m})g(\mathfrak{n}) \in Z$ is called a centrally-extended generalized (α,β) -derivation CE(g)- (α,β) -D (for brevity), where g is a CE- (α,β) -D of \mathbb{R} .

In 1991, Daif [5] introduced the notion of a multiplicative derivation which, unlike conventional derivations, does not necessarily need to be additive. In addition, Daif and El-Sayiad [6], considering the concept of G mapping, extended this concept by introducing the notion of generalized multiplicative derivation. There are numerous findings regarding this subject [7, 8, 9].

Herstein [10] initially introduced the concept of reverse derivation RD (for brevity). An additive mapping v from \mathbb{R} to itself is called an RD mapping if it is additive and satisfies the condition $v(\mathfrak{mn}) = v(\mathfrak{n})\mathfrak{m} + \mathfrak{n}v(\mathfrak{m})$ for all elements $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}$. Many authors studied this concept, in many directions, like [11]. Moreover, this concept has undergone considerable development, with generalizations being presented as follows [12]:

If a mapping T of \mathbb{R} such that for all $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}$, the condition $T(\mathfrak{mn}) = T(\mathfrak{n})\mathfrak{m} + \mathfrak{n}g(\mathfrak{m})$ holds, then T is called multiplicative(generalized)-reverse derivation M(g)-RD (for brevity), where g is any map. Subsequently, those authors expanded the concept of a M(g)-RD mapping, leading to a multiplicative (generalized) (α,β) -reverse derivation M(g)- (α,β) -RD, (for brevity).

A mapping T of \mathbb{R} is MG- (α,β) -RD if for all $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}$, $T(\mathfrak{mn}) = T(\mathfrak{n})\alpha(\mathfrak{m}) + \beta(\mathfrak{n})g(\mathfrak{m})$ holds, where g is a mapping. Many results can be found in [13, 14, 15].

Muthana and AlKhamisi[16] defined a map T of \mathbb{R} as a centrally-extended multiplicative(generalized)- (α, β) derivation for every $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}, T(\mathfrak{mn}) - T(\mathfrak{m})\alpha(\mathfrak{n}) - \beta(\mathfrak{m})g(\mathfrak{n}) \in \mathbb{Z}$ hold, where g is mapping for \mathbb{R} CEM(g) $(\alpha,\beta)D$, (for brevity). Moreover, they investigated the identities: $\mathbb{F}(ef) \pm \beta(e)\mathbb{G}(f) \in \mathbb{Z}, \mathbb{F}(ef) \pm g(e)\alpha(f) \in \mathbb{Z}$, and $\mathbb{F}(ef) \pm g(f)\alpha(e) \in \mathbb{Z}$, for all $e, f \in \mathbb{Z}$.

In this paper, we study the above results by presenting the new concept, called centrally-extended multiplicative (generalized)- (α,β) -reverse derivation $\mathbb{CEM}(\eth) - (\alpha,\beta) - RD$ (for brevity). Additionally, we discuss several identities on a suitable subset of a semiprime ring such as $T(\mathfrak{mn}) \mp \beta(\mathfrak{n})H(\mathfrak{m}) \in \mathbb{Z}$, $T(\mathfrak{mn}) \mp g(\mathfrak{n})\alpha(\mathfrak{m}) \in \mathbb{Z}$, and $T(\mathfrak{mn}) \mp g(\mathfrak{m})\alpha(\mathfrak{n}) \in \mathbb{Z}$, where α, β are mappings of \mathbb{R} , and H is M(g)- (α,β) -RD.

2 Preliminaries

The starting point will be to introduce the definition of $\mathbb{CEM}(\eth) - (\alpha, \beta) - RD$, (for brevity) as follows:

Definition 2.1. A mapping T of \mathbb{R} is said to be $\mathbb{CEM}(\eth) - (\alpha, \beta) - RD$ associated with a map d if the condition $T(\mathfrak{mn}) - T(\mathfrak{n})\alpha(\mathfrak{m}) - \beta(\mathfrak{n})d(\mathfrak{m}) \in Z$ holds for every $\mathfrak{m}, \mathfrak{n} \in \mathbb{R}$ where α, β are mappings from R.

Throughout this work, \mathbb{K} is a symbol of the left ideal of \mathbb{R} .

3 Main results

Theorem 3.1. For an anti-homomorphism β , α a mapping on \mathbb{K} and a $\mathbb{CEM}(\eth) - (\alpha, \beta) - RD$ mapping T of \mathbb{R} associated to d, for all element $\mathfrak{m} \in \mathbb{K}$, the statement $K[(d \mp g)(\mathfrak{m})] = 0$ is true whenever $T(\mathfrak{mn}) \mp \beta(\mathfrak{n}) H(\mathfrak{m})$ is contained in Z, H is M(g)- (α, β) -RD mapping of \mathbb{R} associated to g and $\alpha(\mathbb{K})$ contained in \mathbb{K} , $\beta(\mathbb{K}) = \mathbb{K}$.

Proof.

$$T(\mathfrak{mn}) \mp \beta(\mathfrak{n}) H(\mathfrak{m}) \in \mathbb{Z}.$$
(3.1)

Replacing \mathfrak{m} by $\mathfrak{m}\mathbf{z}$ in (3.1), we get

$$T(\mathfrak{mzn}) \mp \beta(\mathfrak{n}) H(\mathfrak{mn}) \in \mathbb{Z}.$$

$$(T(\mathbf{zn}) \mp \beta(\mathbf{n})H(\mathbf{z}))\alpha(\mathbf{m}) + \beta(\mathbf{zn})d(\mathbf{m}) \mp \beta(\mathbf{n})\beta(\mathbf{z})g(\mathbf{m}) \in \mathbb{Z}.$$

By using (3.1), we have

$$\beta(\mathfrak{n})\beta(\mathbf{z})d(\mathfrak{m}) \mp \beta(\mathfrak{n})\beta(\mathbf{z})g(\mathfrak{m}) \in Z.$$
(3.2)

Commuting (3.2) with $\alpha(\mathfrak{m})$, we get

$$[\beta(\mathfrak{n})\beta(\mathbf{z})(d \mp g)(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$

Since $\beta(\mathbb{K}) = \mathbb{K}$, $[\mathfrak{nz}(d \mp g)(\mathfrak{m}), \alpha(\mathfrak{m})] = 0$. By [[16], Lemma 2.1], we get

$$\mathbb{K}[(d \neq g)(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$

By semiprimeness of \mathbb{K} , if \mathbb{K} is an ideal of \mathbb{R} , then get

$$[(d \mp g)(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$

Theorem 3.2. For a surjective mapping β of \mathbb{K} and a $\mathbb{CEM}(\eth) - (\alpha, \beta) - RD$ mapping T of \mathbb{R} associated to d, the statement $K[(d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0$ is true for all element $\mathfrak{m} \in \mathbb{K}$ whenever $T(\mathfrak{mn}) \neq g(\mathfrak{n})\alpha(\mathfrak{m}) \in Z$ and $\alpha(\mathbb{K}) \subseteq \mathbb{K}$, α acts anti-homomorphism and β homomorphism on \mathbb{K} .

Proof.

$$T(\mathfrak{mn}) \mp g(\mathfrak{n})\alpha(\mathfrak{m}) \in Z.$$
(3.3)

If we replace \mathfrak{m} by $\mathfrak{m}\mathbf{z}$ in (3.3), then

$$T(\mathfrak{mzn}) \mp g(\mathfrak{n})\alpha(\mathfrak{mz}) \in \mathbb{Z}.$$

Since T is $\mathbb{CEM}(\eth) - (\alpha, \beta) - RD$ of \mathbb{R} , and α is anti-homomorphism, we have

$$(T(\mathbf{zn}) \mp g(\mathbf{n})\alpha(\mathbf{z}))\alpha(\mathbf{m}) + \beta(\mathbf{zn})d(\mathbf{m}) \in \mathbb{Z}.$$

Using the hypothesis, and since β is homomorphism, we get

$$\beta(\mathbf{z})\beta(\mathfrak{n})d(\mathfrak{m}) \in Z. \tag{3.4}$$

1150

On Centrally-Extended Multiplicative...

Commuting (3.4) with $\alpha(\mathfrak{m})$, we obtain

$$[\beta(\mathbf{z})\beta(\mathfrak{n})d(\mathfrak{m}),\alpha(\mathfrak{m})]=0$$

Since $\beta(\mathbb{K}) = \mathbb{K}$,

$$[\mathbf{znd}(\mathbf{m}), \alpha(\mathbf{m})] = 0.$$

By [[16], Lemma 2.1], we get

$$\mathbb{K}[d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$

Theorem 3.3. For a surjective mapping α on \mathbb{K} and a $\mathbb{CEM}(\eth) - (\alpha, \alpha) - RD$ mapping T of \mathbb{R} associated to d, for all the elements \mathfrak{m} and \mathfrak{n} of \mathbb{K} the statement $K[(d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0$ holds whenever $T(\mathfrak{mn}) \neq g(\mathfrak{m})\alpha(\mathfrak{n}) \in Z$, where α acts homomorphism on \mathbb{K} .

Proof.

$$T(\mathfrak{mn}) \pm g(\mathfrak{m})\alpha(\mathfrak{n}) \in z. \tag{3.5}$$

Replacing \mathfrak{m} with $\mathfrak{m} \mathbf{z}$ in (3.5), we get

$$T(\mathbf{z}\mathfrak{n})\alpha(\mathfrak{m}) + \alpha(\mathbf{z}\mathfrak{n})d(\mathfrak{m}) \pm g(\mathfrak{m}\mathbf{z})\alpha(\mathfrak{n}) \in z.$$
(3.6)

Now, taking \mathbf{z} instead of \mathfrak{m} in (3.5), we have

$$T(\mathbf{zn}) \pm g(\mathbf{z})\alpha(\mathbf{n}) \in z.$$
(3.7)

Commuting (3.7) with $\alpha(\mathfrak{m})$, we get

$$[T(\mathbf{zn}) \pm g(\mathbf{z})\alpha(\mathbf{n}), \alpha(\mathbf{m})] = 0.$$

$$[T(\mathbf{zn}), \alpha(\mathbf{m})] \pm [g(\mathbf{z})\alpha(\mathbf{n}), \alpha(\mathbf{m})] = 0.$$
 (3.8)

Right multiplying (8) by $\alpha(\mathfrak{m})$, we obtain

$$[T(\mathbf{z}\mathfrak{n})\alpha(\mathfrak{m}),\alpha(\mathfrak{m})] \pm [g(\mathbf{z})\alpha(\mathfrak{n})\alpha(\mathfrak{m}),\alpha(\mathfrak{m})] = 0.$$
(3.9)

Commuting (3.6) with $\alpha(\mathfrak{m})$, we have

$$[T(\mathbf{z}\mathfrak{n})\alpha(\mathfrak{m}) + \alpha(\mathbf{z}\mathfrak{n})d(\mathfrak{m}) \pm g(\mathfrak{m}\mathbf{z})\alpha(\mathfrak{n}), \alpha(\mathfrak{m})] = 0.$$

This yields

$$[T(\mathbf{zn})\alpha(\mathbf{m}),\alpha(\mathbf{m})] + [\alpha(\mathbf{zn})d(\mathbf{m}),\alpha(\mathbf{m})] \pm [g(\mathbf{mz})\alpha(\mathbf{n}),\alpha(\mathbf{m})] = 0.$$
(3.10)

Subtracting (3.9) from (3.10), we get

$$[\alpha(\mathbf{zn})d(\mathbf{m}), \alpha(\mathbf{m})] + [\pm g(\mathbf{mz})\alpha(\mathbf{n}) \mp g(\mathbf{z})\alpha(\mathbf{n})\alpha(\mathbf{m}), \alpha(\mathbf{m})] = 0.$$
(3.11)

Substituting \mathfrak{nm} for \mathfrak{n} in (3.11), we get

$$[\alpha(\mathbf{znm})d(\mathbf{m}),\alpha(\mathbf{m})] + [\pm g(\mathbf{mz})\alpha(\mathbf{n}) \mp g(\mathbf{z})\alpha(\mathbf{n})\alpha(\mathbf{m}),\alpha(\mathbf{m})]\alpha(\mathbf{m}) = 0. \quad (3.12)$$

Multiplying (3.11) by $\alpha(\mathfrak{m})$ on the right, we have

$$[\alpha(\mathbf{z}\mathfrak{n})d(\mathfrak{m}),\alpha(\mathfrak{m})]\alpha(\mathfrak{m}) + [\pm g(\mathfrak{m}\mathbf{z})\alpha(\mathfrak{n}) \mp g(\mathbf{z})\alpha(\mathfrak{m})\alpha(\mathfrak{m}),\alpha(\mathfrak{m})]\alpha(\mathfrak{m}) = 0.$$
(3.13)

Subtracting (3.12) from (3.13),

$$[\alpha(\mathbf{znm})d(\mathbf{m}),\alpha(\mathbf{m})] - [\alpha(\mathbf{zn})d(\mathbf{m}),\alpha(\mathbf{m})]\alpha(\mathbf{m}) = 0.$$

Since α is a homomorphism, we get

$$[\alpha(\mathbf{z}\mathfrak{n})\alpha(\mathfrak{m})d(\mathfrak{m})-\alpha(\mathbf{z}\mathfrak{n})d(\mathfrak{m})\alpha(\mathfrak{m}),\alpha(\mathfrak{m})]=0.$$

Since $\alpha(\mathbb{K}) = \mathbb{K}$,

$$[\mathbf{zn}[d(\mathbf{m}), \alpha(\mathbf{m})], \alpha(\mathbf{m})] = 0.$$
(3.14)

Replacing \mathbf{z} with $d(\mathbf{m})\mathbf{z}$ in (3.14), we obtain

$$[d(\mathfrak{m})\mathbf{z}\mathfrak{n}[d(\mathfrak{m}),\alpha(\mathfrak{m})],\alpha(\mathfrak{m})] = 0.$$

This gives

$$[d(\mathfrak{m}), \alpha(\mathfrak{m})]\mathbf{z}\mathfrak{n}[d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$
(3.15)

Left multiplying (3.15) by \mathbf{zn} implies

$$\mathbf{zn}[d(\mathbf{m}), \alpha(\mathbf{m})] \mathbb{R} \mathbf{zn}[d(\mathbf{m}), \alpha(\mathbf{m})] = 0.$$
(3.16)

The semiprimeness property of \mathbb{R} yields

$$\mathbf{zn}[d(\mathbf{m}), \alpha(\mathbf{m})] = 0. \tag{3.17}$$

Since K is left ideal, we have $[d(\mathfrak{m}), \alpha(\mathfrak{m})]r\mathfrak{n} = 0$. In (3.17), replace \mathbf{z} by \mathfrak{n} and replace \mathfrak{n} by $[d(\mathfrak{m}), \alpha(\mathfrak{m})]r\mathfrak{n}$, we find that

$$\mathfrak{n}[d(\mathfrak{m}), \alpha(\mathfrak{m})]r\mathfrak{n}[d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$
$$\mathbb{K}[d(\mathfrak{m}), \alpha(\mathfrak{m})] = 0.$$

References

- [1] I.N. Herstein, Topics in ring theory, University of Chicago Press, 1969.
- [2] M. Bresar, On the distance of the composition of two derivation to the generalized derivations, Glasgow Math. J., 33, no. 1, (1991), 89–93.
- [3] H.E. Bell, M. N. Daif, On centrally extended maps on rings, Beitrage Algebra Geom., Article no. 244, (2015), 1–8.
- [4] M.S. Tammam El-Sayiad, N.M. Muthana, Z.S. Alkhamisi, On rings with some Kinds of centrally-extended maps, Beitrage Algebra Geom., Article no. 274, (2015), 1–10.
- [5] M.N. Daif, When is a multiplicative derivation additive, Int. J. Math. Math. Sci., 14, no. 3, (1991), 615–618.
- [6] M.N. Daif, M.S. Tammam El-Sayiad, Multiplicative generalized derivation which are additive, East-west J. Math., 19, no. 1, (1997), 31–37.
- [7] B. Dhara, S. Ali,on multiplicative (generalized) derivation, Aequat. Math., 86, nos. 1-2, (2013), 65–79.
- [8] A. K. Faraj, A. M. Abduldaim, Some Results Concerning Multiplicative (Generalized)-Derivations and Multiplicative Left Centralizers, Int. J. Math. Comput. Sci., 15, no. 4, (2020), 1073–1090.
- [9] M.N. Daif, M.S. Tammam El-Sayiad, V.D. Filippis, Multiplicative of left centralizers forcing additivity, Bol. Soc. Parana. Mat., 32, no. 1, (2014), 61–69.
- [10] I. N. Herstein, Jordan derivation of prime ring, Proc. Amer. Math. Soc., 8, (1957), 1104–1110.
- [11] A.K. Faraj, A.M. Abduldaim, Commutativity and Prime Ideals with Proposed Algebraic Identities, Int. J. Math. Comput. Sci., 16, no. 4, (2021), 1607–1622.
- [12] S.K. Tiwari, R.K. Sharma, B. Dhara, Some theorems of commutativity on semiprime ring with mapping, Southeast Asian Bull. Math., 42, no. 2, (2018), 279–292.

- [13] Z.S.M. Alhaidary, A.H. Majeed, Commutativity Results for Multiplicative (Generalizaed)(α, β) Reverse Derivations on Prime Rings, Iraqi Journal of Science, 62, no. 9,(2021), 3102–3113.
- [14] Z.S.M. Alhaidary, A.H. Majeed, Multiplicative (generalized) (η, ζ) reverse derivations on ideals of prime rings, AIP Conference Proceedings 2414, 040016; Published Online: February 13, 2023.
- [15] Z.S.M. Alhaidary, A.H. Majeed, Square Closed Lie Ideals and Multiplicative (Generalized) (α, β) Reverse Derivation of Prime Rings, Journal of Discrete Mathematical Science and cryptography, (2021), 2037– 2046.
- [16] N. Muthana, Z. AlKhamisi, On centrally-extended multiplicative (generalized)- (α, β) -derivation in semiprime rings, Hacettepe Journal of Mathematics and Statistics, **49**, no. 2, (2021), 578–585.