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Abstract

Kernel density estimates for bivariate circular data are efficient

non-parametric estimation methods incorporating free smoothing pa-

rameters that significantly influence the estimation process’s results.

In this paper, we focus our attention on selecting the optimal band-

width for bivariate circular data from the von Mises distribution us-

ing cross-validation and a nonlinear minimized method using circular

packages in R software.

1 Introduction

Circular data, measured in degrees or radians and represented as a point
on a circle, is fundamentally different from linear data due to its periodic
character (0◦= 360◦) [1]. Circular datasets are often seen in several fields
including biological sciences, bioinformatics, meteorology, and geography [2].
Special techniques must be used for angular data and, when construct these
techniques, we must take into consideration the nature of this type of data.
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In the literature, for the univariate angular data, the smoothing parameter
(bandwidth) selection received little attention. In 2008, Taylor [3] proposed
a plug-in rule approach to choose the optimal smoothing parameters for uni-
variate angular density estimation. In 2011, Di marzio et al. [4] used the
bootstrap approach to consider a procedure which can be used to select the
bandwidth for circular data. In 2012, Oliveira et al. [5] presented a new
plugin method to select the smoothing parameters for the kernel density es-
timation which is evaluated using simulated data. In 2019, for multivariate
angular data points, Abushilah [6] used von-Mises distribution as a kernel
function to select optimal bandwidth for amino acids from 500 proteins. In
2023, Zámečńık et al. [2] presented common bandwidth selection methods
focusing on variable bandwidth selection where they used simulations and
real datasets to evaluate and compare these methods and highlighting their
potential advantages.
In this paper, we propose a methodology to determine smoothing param-
eters for bivariate circular data using Cross Validation to enhance model
accuracy, MLE to ensure that estimates converge to true parameter values,
and the Jones-Pewsey distribution, characterized by its parameters that can
be modified to suit different types of circular data in scientific fields. We use
optimization to improve performance and calculate kernel density within the
optimal bandwidth.

2 Selection of Bandwidth for Bivariate An-

gular Data

Let (ϕ1, ψ1) ,∈ [−π, π], i = 1, 2, . . . , n be an angular data from a population
with an unknown density f(ϕ, ψ). The definition of the circular kernel density
estimation f̂(ϕ, ψ) of function f(ϕ, ψ) is as follows:

f̂ (ϕ, ψ) =
1

n

n
∑

i=1

K(
ϕ− ϕi

h1
)K(

ψ − ψi

h2
) (2.1)

Leave one-out cross-validation (LOOCV) is a cross-validation technique. In
this method, the dataset is partitioned in a manner where one observa-
tion is designated as the validation set, while the remaining observations
are allocated as the training set. Later, the above will be applied in our
work. The value of bandwidth, which is the concentration parameter for
the Jones-Pewsey distribution, should be taken into consideration for ev-
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ery given value of κ = (κ1, κ2) > 0, the dataset is divided into two parti-
tions; namely, B1 and B1. The initial partition, denoted as B1 and referred
to as the test partition, comprises of a single perpendicular pair of angles
B1 = (ϕi, ψi) , i = 1, 2, . . . , n. Others are contained in the second partition
B2 = (ϕj , ψj) , j = 1, 2, . . . , n, i 6= j. When working with B1 partition data,
the kernel density estimation is determined by using this formula:

f̂ (−i) (ϕj, ψj) =
1

n − 1

[

∑

j 6=i

K (△1;µ, κ1) K(△2;µ, κ2)

]

(2.2)

where △1 = ϕi − ϕj , △2 = ψi − ψj , µ = 0, and K(·) As a kernel function
represents the Jones-Pewsey distribution, which is defined by [8]:

f (ϕ;µ; κ) =
[cosh (κλ) + sinh (κλ) cos (ϕ− µ)]

1

λ

2πP 1

λ

cosh (κλ)
, 0 ≤ ϕ ≤ 2π (2.3)

where µ is the mean direction (0 ≤ µ ≤ 2π) , κ a concentration parameter
(κ ≥ 0), λ is a shape parameter (−∞ < λ <∞), and P 1

λ

(z) is the associated

Legendre function of the first kind of degree 1
λ
and order 0. Compute the

likelihood function utilizing the circular kernel function stated in Eq. 2.3
with the given formula:

L (κ; (ϕ1, ψ1) , (ϕ2, ψ2) , . . . , (ϕn, ψn)) =
n
∏

i=1

f̂ (−i) (ϕj, ψj) (2.4)

Then calculate the likelihood function’s logarithm using Eq. 2.4 to get

L (κ; (ϕ1, ψ1) , (ϕ2, ψ2) , . . . , (ϕn, ψn)) =

n
∑

i=1

log
(

f̂ (−i) (ϕj , ψj)
)

(2.5)

The next step is to apply the optimization method to our proposed method-
ology in order to boost its performance. We have utilized the Newton-
Raphson method in conjunction with a non-linear minimization technique
(nlm-technique) for optimization purposes [9]. A good approximation for
the real-valued, continuous, and differentiable function can be quickly found
using this method. The Raphson technique for solving equations with one
variable is executed as follows: The function f(y) is assumed to have a root
close to the equation y = yn, According to Newton’s method, a more accurate
estimate of the root is

yn+1 = yn −
f (yn)

f́ (yn)
, (2.6)
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such that at the point y = yn, the slope for the line that is tangent to the
graph f(y) is f́ (yn). Setting yn = yn+1 repeatedly iteratively improves the
approximation and achieves the target accuracy according to Eq. 2.6 until
yn+1 approaches yn. Using a Newton-Raphson approach, as shown above,
the function nlm (non-linear minimization) in the R statistical package [10]
minimizes the function f(y). IN Algorithm 1, we present the approach that
we suggest in this section for improving the performance given by the (nlm-
BLCV). Algorithm 1 (nlm-BLCV) utilizes the non-linear minimizing func-
tion nlm(f(κ1, κ2)). Here, f represents the log-likelihood-cross-validation
function that we want to minimize, while (κ1, κ2) denotes the beginning val-
ues. For bivariate circular data {(ϕ1, ψ1) , (ϕ2, ψ2) , . . . , (ϕn, ψn)}, the optimal
smoothing parameters are the ones that solve the nlm (f(κ1, κ2)).

3 Evaluation of the Performance

The process described in Section 2 applies to the data generated, which are
simulated from two models from the BvM(µ, κ) distribution. The next steps
summarize the generation of two models:

• Model 1: circular data of varying sizes m are produced by BvM(µ, κ)

where µ = (0, 0)T , κ =

(

2 0
0 1

)

.

• Model 2: circular data of varying sizes m are produced by BvM(µ, κ)

where µ = (0.3, 3.5)T , κ =

(

1.2 0
0 0.5

)

.

In Table 1, we present the results of the joint probability density function for
the two models above, obtained using the technique described in Section 2.

The optimal bandwidth was calculated. We have observed the following:

1. The parameter influenced by the sample size, but we cannot definitively
determine whether they increase or decrease in direct proportion to
changes in the sample size (see Table 1).

2. The optimum bandwidth for bivariate and univariate varies signifi-
cantly from one another (see Table 1).
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Algorithm 1: Calculate the smoothing parameters for bivariate
circular data using the Jones-Pewsey kernel

Data: Bivariate circular data (ϕ1, ψ1) , (ϕ2, ψ2) , . . . , (ϕn, ψn)
Result: Optimal bandwidth for the data
Input: n, µ1, µ2, κ1, κ2, κ0

Generate the data from BvM

((

µ1

µ2

)

,

(

κ1 0
0 κ2

))

;

Compute;
M1 < −outer(phi, phi, ”− ”);
M2 << − outer(psi, psi, ”− ”);
begin

f1 < function(B1);
if (B1 > 0) then

Mx < − djonespewsey (M1, µ = circular(0), kappa =
B1, psi = −0.6);
for (i in 1 : n) do

{Mx[i, i] = 0};
fhat < − apply(M1, 1, sum);
fhat1 < −fhat/(n − 1);
log .fhat < − log(fhat1);
sum. log < −sum(log .fhat1);
result < −(−sum. log);

end

end
return (result);
Apply Non-Linear Minimization (f1, κ0);

end
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begin
f2 < − function(B2);
if (B2 > 0) then

My < − djonespewsey (M2, µ = circular(0), kappa =
B2, psi = −0.6);
for (i in 1 : n) do

{My[i, i] = 0} ;
fhat < −apply(My, 1, sum) ;
fhat2 < −fhat/(n − 1) ;
log .fhat < − log(fhat2) ;
sum. log < −sum (log .fhat2) ;
result < −(−sum. log) ;

end

end
return (result);
Apply Non-Linear Minimization (f2, κ0);

end
begin

f3 < − function(B);
if (B[1] > 0&B[2] > 0) then

B1 < −B[1] ;
B1 < −B[2] ;
Mx < − djonespewsey(M1, µ = circular(0), kappa =
B1, psi = −0.6) ;
My < −djonespewsey(M2, µ = circular(0), kappa = B2, psi =
−0.6) ;
M < −(Mx ∗My);
for (i in 1 : n) do

M [i, i] = 0
ghat < − apply(M, 1, sum);
ghat1 < −ghat/(n− 1);
log .ghat << − log(ghat1);
sum. log < − sum (log .ghat);
result < − (−sum. log);

end

end

end
Bx < − outx$estimate; By < − outy$estimate;

c1 < − Bx/(n
(2/5)); c2 < − By/(n

(2/5));

BBx < −c1 ∗ n(2/6); BBy < −c2 ∗ n(2/6);
Apply Non-Linear Minimization (f3, (BBx,BBy))
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Table 1: The smoothing parameter for the two models
mentioned above with varying sample sizes and the kernel
function Jones-Pewsey distribution.

Model 1
Bandwidth for

Sample size
ϕ ψ

Bandwidth for
(ϕ, ψ)

10 2.0323 3.5132 1.2841 3.5790
20 2.6833 0.3204 2.7184 0.4839
30 2.0829 0.6255 2.0648 0.3472
40 2.4825 1.6165 2.3982 1.4168
50 2.6509 1.6888 2.3418 1.3055
60 2.7337 2.2605 2.6495 2.0725
70 2.9528 2.8189 3.0802 1.8466
80 2.8711 2.7875 2.6266 1.4156
90 2.8467 1.9644 2.5298 1.3876
100 2.6722 1.7636 2.5643 1.5707
200 87.8577 2.683 61.7154 0.3032
300 43.3811 3.0932 29.6633 0.5354
400 38.2924 2.6937 25.7071 0.6306
500 42.9468 2.7853 28.3661 0.3635
1000 76.7275 26.8261 48.3944 83.3726

Model 2
10 1.7065 3.2129 0.9808 2.8722
20 2.4862 0.4328 2.4561 0.3652
30 1.8513 1.0763 1.8629 0.8330
40 2.1664 0.0614 1.7694 0.0000
50 2.3649 1.0571 2.2720 0.5429
60 2.6155 1.2214 2.6682 0.9631
70 2.8177 1.9813 2.8793 0.5966
80 2.8016 2.7575 2.3035 2.5219
90 2.8861 2.2504 3.3284 0.7700
100 2.7002 2.4967 2.4627 1.2115
200 2.7627 1.5522 2.5503 1.0407
300 2.5901 1.7478 2.4290 1.4517
400 41.4635 2.196 27.8326 0.1094
500 34.4331 2.3758 26.2370 0.1963
1000 29.0381 2.509 25.2695 0.1376
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4 Conclusion

A methodology for determining the optimal bandwidth for bivariate angular
data points has been presented in this paper. The optimization technique
(non-linear minimization) with kernel density estimation with the Jones-
Pewsey distribution as the kernel function are used to construct this ap-
proach. Moreover, a simulation study has been presented to assess the pro-
posed methodology across various models and sample sizes utilizing R soft-
ware by generating data from a von-Mises circular distribution. According
to the simulations results, our results are as follows: The joint pdf appears
differently when the parameters are optimal compared to when they are
random, suggesting that the joint pdf is parameter-dependent for bivariate
directional data. The free parameters (bandwidth) in the kernel function
significantly affect pdf because these parameters control the behavior and
flexibility of the kernel function.
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