A Note on the Exponential Diophantine Equation $8^{x}+161^{y}=z^{2}$

Chatchawan Panraksa
Applied Mathematics Program
Mahidol University International College
999 Phutthamonthon 4 Road, Salaya, 73170
Nakhonpathom, Thailand
email: chatchawan.pan@mahidol.edu

(Received June 10, 2024, Accepted July 2, 2024, Published July 3, 2024)

Abstract

In this note, we revisit the exponential Diophantine equation $8^{x}+$ $161^{y}=z^{2}$, initially studied by Manikandan and Venkatraman. Their work established that the equation has the two non-negative integer solutions: $(1,0,3)$ and ($1,1,13$). Our findings reveal an additional solution, $(2,1,15)$, and we show that these three solutions constitute the complete list of non-negative integer solutions for this equation. This extends and completes the main result presented in their paper.

1 Introduction

Exponential Diophantine equations of the form $a^{x}+b^{y}=z^{2}$ have garnered considerable interest due to their rich mathematical properties and complexity. In their recent publication, Manikandan and Venkatraman [1] analyzed the equation $8^{x}+161^{y}=z^{2}$ and concluded that $(1,0,3)$ and $(1,1,13)$ are non-negative integer solutions. Our findings reveal an additional solution, $(2,1,15)$, thereby extending the main result presented in their paper.

Key words and phrases: Exponential Diophantine equation, non-negative integer solutions, number theory.
AMS (MOS) Subject Classifications: 11D61.
ISSN 1814-0432, 2025, http://ijmcs.future-in-tech.net

2 Main results

The following lemma has been proved in Lemma 2.3 in Manikandan and Venkatraman's article [1] using Mihăilescu's theorem. Here, we provide a proof using only elementary methods.

Lemma 2.1. The Diophantine equation $1+161^{y}=z^{2}$ has no non-negative integer solutions.

Proof. Assume $1+161^{y}=z^{2}$ for non-negative integers y and z. If $y=0$, then $z^{2}=2$, which is impossible. If $z=0$, then $161^{y}=-1$, which is also impossible. For $y>0$ and $z>0$, we have $z^{2}-1=161^{y}$.

Factoring, we get $(z-1)(z+1)=161^{y}$. We have $z \geq 8$. Since $z-1$ and $z+1$ are consecutive odd numbers, they must be coprime. Given that $161=7 \cdot 23$ and $z-1<z+1$, it follows that $z-1=7^{y}$ and $z+1=23^{y}$. However, 7^{y} and 23^{y} cannot be consecutive odd integers for any positive integer y. Therefore, the equation $1+161^{y}=z^{2}$ has no non-negative integer solutions.

We now state the following lemma:
Lemma 2.2. [3] The Diophantine equation $8^{x}+1=z^{2}$ has no non-negative integer solutions other than $(1,3)$.

The following theorem from Scott and Styer's work [4] provides a key insight into our problem.

Theorem 2.3. [4] For relatively prime integers a and b both greater than one and odd integer c, there are at most two solutions in positive integers (x, y, z) to the equation $a^{x}+b^{y}=c^{z}$. Any solution (x, y, z) must satisfy $z<\frac{a b}{2}$.

Using this theorem as a basis, we present our main result regarding the equation $8^{x}+161^{y}=z^{2}$.

2.1 Main Theorem

Theorem 2.4. The exponential Diophantine equation $8^{x}+161^{y}=z^{2}$ has exactly the three non-negative integer solutions: $(1,0,3),(1,1,13)$, and $(2,1,15)$.

Proof. Clearly, $(1,0,3),(1,1,13)$, and $(2,1,15)$ are solutions.
We will now show that there are no other solutions. According to Lemma 2.1, if $x=0$, then $8^{0}+161^{y}=z^{2}$ implies $1+161^{y}=z^{2}$, which has no nonnegative integer solutions. Hence, the only valid case is $y=0$ and $z=1$, leading to $(1,0,3)$.

If $y=0$, then $8^{x}+1=z^{2}$. Lemma 2.2 shows that the only solution for $x \geq 1$ is $(1,0,3)$.

For cases where both x and y are positive, Theorem 2.3 confirms that for relatively prime integers a and b and an odd integer c, there are at most two solutions in positive integers (x, y, z). This is consistent with our findings.

Therefore, the equation $8^{x}+161^{y}=z^{2}$ has exactly three non-negative integer solutions.

Acknowledgment. The author would like to thank the referee for his/her comments.

References

[1] K. Manikandan, R. Venkatraman, On the Exponential Diophantine Equation $8^{x}+161^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 19, no. 4, (2024), 1101-1104.
[2] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.
[3] S. Asthana, M. M. Singh, On the Diophantine Equation $8^{x}+113^{y}=z^{2}$, International Journal of Algebra, 11, no. 5, (2017), 225-230.
[4] R. Scott, R. Styer, Number of solutions to $a^{x}+b^{y}=c^{z}$, Publ. Math. Debrecen, 88, (2016), 131-138.

