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Abstract
Two efficient quadrature formulae have been developed for evaluat-

ing numerically certain singular integral equations of the first kind over
the finite interval [-1,1]. Central to this work is the application of four
special cases of the Jacobi polynomials Pα,β

n (x), whose zeros served as
interpolation and collocation nodes: (i) α = β = −1

2 , Tn(x), the first
kind Chebyshev polynomials (ii) α = β = 1

2 , Un(x), the second kind
(iii) α = −1

2 , β = 1
2 , Vn(x), the third kind (iv) α = 1

2 , β = −1
2 , Wn(x),

the fourth kind. Four tables of numerical results have been provided
for verification and validation of the rules developed.

1 Introduction

Cauchy singular integral equations of the first kind are generally expressed as

1

π

∫
−

1

−1

k1(x, s)φ(x)

x − s
dx +

1

π

∫ 1

−1

k2(x, s)φ(x)dx = g(s), − 1 ≤ s ≤ 1 (1.1)

where k1, k2 and g are real valued functions which satisfy the Hölder condi-
tion with respect to each of the independent variables and φ is the solution
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to be sought. These equations are encountered in aerodynamics and plane
elasticity [5] and a variety of problems of mathematical physics [7], such
as fracture problems in solid mechanics. Such integral equations arise quite
generally from problems involving the scattering of radiation. Many authors,
including Mushkhelishvili [8], Ioakimidis [4], Tricomi [10], Srivastav [9], and
a host of others have investigated this problem and have offered analytical
insight and numerical solutions for various forms of (1). For instance, Kim[6]
solved (1) using Gaussian rule with zeros of Chebyshev polynomials of the
second kind as the nodes, while the zeros of the first kind were taken to be
the collocation points. The most recent paper on this problem is by Eshku-
vatov, Long, and Abdukawi [2] who approximated the unknown function φ
by a finite series of orthogonal polynomials and then employed the usual col-
location ’trick’, and further showed analytically that the method would be
exact whenever the output function g(s) is linear.

In this paper we set k1 = 1 and k2 = 0, to obtain∫
−

1

−1

φ(x)

x − s
dx = g(s) − 1 ≤ s ≤ 1 (1.2)

The principal concern of this work is the numerical approximation of (2).
This equation has a practical problem; it has a singularity of Cauchy-type.
According to Mushkhelishvili [8], the analytical solution of (1) falls into four
categories:
Category(i): Solution is unbounded at both end-points s = ±1

φ(s) =
f(s)√
1 − s2

(1.3)

and for uniqueness of solution is imposed the condition∫ 1

−1

φ(x)dx = 0 (1.4)

where f(s) is a bounded function on [-1,1].
Category(ii): Solution is bounded at both end-points s = ±1

φ(s) = h(s)
√

1 − s2 (1.5)

subject to ∫ 1

−1

g(s)√
1 − s2

ds = 0 (1.6)
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where h(s) is a bounded function on [-1,1]
Category(iii): Solution is bounded at one end-point s = −1

φ(s) =

√
1 + s

1 − s
y(s) (1.7)

where y(s) is a bounded function on [-1,1].
Category(iv): Solution is bounded at one end-point s = 1

φ(s) =

√
1 − s

1 + s
q(s) (1.8)

where q(s) is a bounded function on [-1,1]

The sequence,
1√

1 − x2
,
√

1 − x2,

√
1 + x

1 − x
,

√
1 − x

1 + x
is the set of weight func-

tions of the Chebyshev polynomials of the first, second, third and fourth kinds
respectively. We denote these weight functions by the sequence {wj(x)}4

j=1

respectively and the corresponding orthogonal polynomials by Tn(x), Un(x),
Vn(x),Wn(x). These polynomials are special cases of the Jacobi polynomials
Pα,β

n (x) and appear in potential theory. All the four Chebyshev polynomials
satisfy the same recurrence relation [see [3]]

zn+1 = 2tzn − zn−1, n = 1, 2, ..., (1.9)

where

z0 = 1 and z1 =

⎧⎪⎪⎨
⎪⎪⎩

t for Tn(t)
2t for Un(t)
2t − 1 for Vn(t)
2t + 1 for Wn(t)

This paper is outlined as follows: In Section 2 we give briefly some properties
of the four Chebyshev polynomials. In Section 3 we outline our method which
evolves from the use of Lagrange interpolation formula, Christoffel-Darboux
identity, collocation technique and the polynomial properties of Section 2.
To verify and validate our methods, we present in Section 4 a numerical ex-
periment and its approximate results. All computations were performed in
Matlab code and in ’format long’ mode (15 decimal digits) .
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2 Some useful properties of the polynomials

It is known (see [2]) that∫ 1

−1

− w1(x)Tn(x)

x − s
dx = πUn−1(s),

∫ 1

−1

− w2(x)Un(x)

x − s
dx = −πTn+1(s)∫ 1

−1

− w3(x)Vn(x)

x − s
dx = πWn(s),

∫ 1

−1

− w4(x)Wn(x)dx

x − s
dx = −πVn(s)

1

π

∫ 1

−1

wj(t)dt = 1, j = 1, ..., 4, T0 = U0 = V0 = W0 = 1

and in [3], given that θ = cos−1(x),

Tn(cos θ) = cos nθ ; zeros x1k = cos
(
(2k − 1)

π

2n

)
, k = 1, ..., n

Un(cos θ) =
sin(n + 1)θ

sin θ
; zeros x2k = cos

(
kπ

n + 1

)
, k = 1, ..., n

Vn(cos θ) =
cos(n + 1

2
)θ

cos 1
2
θ

; zeros x3k = cos

(
(2k − 1)

π

2n + 1

)
, k = 1, ..., n

Wn(cos θ) =
sin(n + 1

2
)θ

sin 1
2
θ

; zeros x4k = cos

(
2kπ

2n + 1

)
, k = 1, ..., n

3 Approximate solution method

Let Hn(x) be any of the four polynomials, which implies that
Hn ∈ D = {Tn(x), Un(x), Vn(x),Wn(x)} and w(x) its corresponding weight
function so that w(x) ∈ {w1(x), w2(x), w3(x), w4(x)}.
Following Mushkhelishvili [8] findings on the analytical solutions of (1), one
may take the unknown function φ as:

φ(x) = w(x)h(x) (3.10)

where h : [−1, 1] → R is some bounded function in R,and w(x) the given
weight functions as previously defined.
Substituting (10) in (2) gives

∫ 1

−1

− w(x)h(x)

x − s
dx = g(s) (3.11)

Let x1, x2, ..., xn be the zeros of Hn(x). Then by the Lagrange interpolation
formula,
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h(x) =
n∑

i=1

Hn(x)h(xi)

(x − xi)H ′
n(xi)

+ en(x) (3.12)

Ignoring the error term en, we have

n∑
i=1

h(xi)

H ′
n(xi)

∫ 1

−1

− w(x)Hn(x)

(x − xi)(x − s)
dx = g(s) (3.13)

Define:

Ψn(s) =

∫ 1

−1

− w(x)Hn(x)

x − s
dx (3.14)

and note that Ψn can be obtained analytically by virtue of the orthogonal
polynomial properties in Section 2. Observe also that Ψ(s), by virtue of (9),
satisfies the recurrence relation
Ψn+1(s) = 2sΨn(s) − Ψn−1(s) + 2λn.
where

λn = 0, if n ≥ 1

λ0 =

∫ 1

−1

w(x)dx, n = 0

By this definition and by methods of partial fractions, we have

n∑
i=1

h(xi)

H ′
n(xi)(s − xi)

[Ψn(s) − Ψn(xi)] = g(s) (3.15)

Let sj, j = 1, ..., n, be the zeros of Ĥn(x); Hn(x) �= Ĥn(x) ∈ D.
Collocating at these points leads to the following system of linear equations
in which h is to be determined,

n∑
i=1

h(xi)

H ′
n(xi)(sj − xi)

[Ψn(sj) − Ψn(xi)] = g(sj), j = 1, ..., n (3.16)

and in matrix form, written as

Ah = b (3.17)



134 G. E. Okecha, C. E. Onwukwe

where

A = (aj,i)j,i =
[Ψn(sj) − Ψn(xi)]

H ′
n(xi)(sj − xi)

, bT = [g(s1), ..., g(sn)]

hT = [h̃(x1), ..., h̃(xn)].

On obtaining h from (17), the approximate solution at xi then is φ̃ =
w(xi)h̃(xi). If, however, solutions of Category(i) type are desired, then
an additional equation will have to come from equation(4); in the case, the
collocation knots may be chosen to satisfy Ĥn−1(sj) = 0, j = 1, ..., n− 1 and

one may choose Ĥn−1(x) = Un−1(x). Then the additional equation required is

n∑
i=1

π
Un−1(xi)h(xi)

T ′
n(xi)

= 0 (3.18)

which simplifies to

n∑
i=1

h(xi) = 0 (3.19)

and the system of equations to solve then is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=1

h(xi)

H ′
n(xi)(sj − xi)

[Ψ(sj) − Ψ(xi)] = g(sj), j = 1, ...n − 1

[∗]
n∑

i=1

h(xi) = 0

Next, we derive an additional approximate rule by using Christoffel-Darboux
formula [1] on (13).
Given any orthogonal polynomials Pn(t) with the weight functions w(t) on

[a, b], define ρn =

∫ b

a

w(t)P2
n(t)dt and Pn(t) = kntn + ..., k0.

kn is the leading coefficient of the polynomial Pn, degree n or the coefficient
of the term tn in Pn(t); ρn is the inner product < Pn, Pn >w(t) with respect
to the weight function w(t) over [a, b].
For most classical orthogonal polynomials the pairs (kn, ρn) are very well
known quantitatively, see for example [1].
Applying Christoffel-Darboux formula to (13) leads to another approximate
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formula

n∑
i=1

h(xi)ρnkn+1

H ′
n(xi)knHn+1(xi)

n−1∑
m=0

Hm(xi)Ψm(s)

ρm

= −g(s) (3.20)

Collocating as in the previous case leads to the n × n system of linear
equations in h.

n∑
i=1

[
kn+1ρn

knH ′
n(xi)Hn+1(xi)

n−1∑
m=0

Hm(xi)

ρm

Ψm(sj)

]
h(xi) = −g(sj), j = 1, ..., n

(3.21)
Again, should you want solutions of Category(i) type, then combine equa-
tions (21) and (19) with j = 1, ...n in (21) changed to j = 1, ..., n − 1 and
the approximate solution obtained as in the preceding case. For exposition
we put them together as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

[
kn+1ρn

knH ′
n(xi)Hn+1(xi)

n−1∑
m=0

Hm(xi)

ρm

Ψm(sj)

]
h(xi) = −g(sj)

j = 1, ..., n − 1
[∗∗]

n∑
i=1

h(xi) = 0

The linear systems of equations were all solved using gaussian elimination
method with scaled partial pivoting in Matlab code.
Observe that both rules have the same numbers of functional evaluations and
share the same degree of precision but differ in the number of multiplications
necessary to implement them: the first rule, 2n2 and the latter, 6n3.
Nonetheless, the latter has an edge over the former for being independent
of the factor |sj − xi| which might probably effect a ‘cancellation effect’ if it
gets quite small for some i, j.

4 Proof of convergence

Lemma:
Given any function f(x) of bounded variation in [a, b] there can be found a
polynomial Qn(x), degree n, such that
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|f(x) − Qn(x)| < ε, whenever n → ∞, ε → 0, (Jackson’s theorem)

Theorem 4.1. Let hn be the Lagrange approximating polynomial interpolat-
ing to h at a finite number of chosen knots in [a, b]. Then the approximate
rules of Section 3 converge and the error bound given by
|En| ≤ ε.κ

Proof :
In view of (11) and (12), the error En can be expressed as,

En =

∫ 1

−1

w(x)
(h(x) − h(x)n)

x − s
dx = g − gn.

By the preceding lemma

|En| ≤ ε

∫ 1

−1

w(x)

x − s
dx

and for the weight functions w(x) under discussion this integral can be ob-
tained in a closed form very readily; assuming the integral to be the constant
κ > 0,
|En| ≤ ε.κ

5 Numerical Experiments And Results

Consider the following exceedingly simple structured singular integral equa-
tion for numerical experiment, verification, and validation of the approximate
rules developed. We have deliberately taken the following problem from [2]
for the sole purpose of comparing our distinct numerical approaches in accu-
racy and efficiency.∫ 1

−1

− φ(x)

x − s
dx = 4s3 + 2s2 + 3s − 1, − 1 < s < 1 (5.22)

The analytical solution, obtained by some results of [2], is given under four
circumstances.

case(i): w(x) =
1√

1 − x2
; solution unbounded at both end-points s = ±1

φ(s) =
1

π
√

1 − s2

(
4s4 + 2s3 + s2 − 2s − 2

)
(5.23)
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case(ii): w(x) =
√

1 − x2 ; solution is bounded at both end-points s = ±1

φ(s) = − 1

π

√
1 − s2 (4s2 + 2s + 5) (5.24)

case(iii): w(x) =

√
1 + x

1 − x
; solution bounded at one end-point s = −1.

φ(s) =
1

π

√
1 + s

1 − s
(4s3 − 2s2 + 3s − 5) (5.25)

case(iv): w(x) =

√
1 − s

1 + s
; solution bounded at one end-point x = 1

φ(s) = − 1

π

√
1 − s

1 + s
(4s3 + 6s2 + 7s + 5) (5.26)

The numerical results that are to follow are for two cases only, namely case(i)
and case(iii). For case(i) we had applied the rules [*] and [**] to (22) and
the results are respectively depicted in Tables I and II. And for case(iii) we
had used the rules (16) and (21) to solve (22) and the results are depicted
in Tables III and IV. We did not find it necessary to repeat the computation
process for the remaining two cases to avoid what might look like a repetition.

n=6 : case(i) using rule[*]

xi Approx(φ̃) Exact(φ) Abs(Error)
.966 2.811022891072834 2.811022891072835 0.000000000000000
.707 -0.543388965223067 -0.543388965223067 0.000000000000000
.259 -0.790242373555593 -0.790242373555593 0
-.259 -0.471932487371802 -0.471932487371803 0.000000000000001
-.707 0.093230807144514 0.093230807144514 0.000000000000000
-.966 3.129332777256615 3.129332777256617 0.000000000000002

Table I
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n=6 : case(i) using rule [**]

xi Approx(φ̃) Exact(φ) Abs(Error)
.966 2.811022891072831 2.811022891072835 0.000000000000003
.707 -0.543388965223067 -0.543388965223067 0.000000000000000
.259 -0.790242373555593 -0.790242373555593 0.000000000000000
-.259 -0.471932487371802 -0.471932487371803 0.000000000000000
-.707 0.093230807144513 0.093230807144514 0.000000000000001
-.966 3.129332777256622 3.129332777256617 0.000000000000006

Table II

What follows next is the result of the numerical experiment carried on (22)
using respectively rules (16) and (21) with the zeros of Vn(x) as the interpo-
lation nodes and the zeros of Wn(x) as the collocation knots.

n=6 : case(iii) using rule (16)

xi Approx(φ̃) Exact(φ) Abs(Error)
0.970 -0.816063729038973 -0.816063729038968 0.000000000000005
0.748 -1.844423936634620 -1.844423936634618 0.000000000000002
0.354 -1.848902000605444 -1.848902000605438 0.000000000000006
-0.120 -1.522132836716184 -1.522132836716183 0.000000000000001
-0.568 -1.350335032174419 -1.350335032174416 0.000000000000004
-0.885 -0.941581028045417 -0.941581028045418 0.000000000000002

Table III

n=6 : case(iii) using rule (21)

xi Approx(φ̃) Exact(φ) Abs(Error)
0.970 -0.816063729038963 -0.816063729038968 0.000000000000005
0.748 -1.844423936634619 -1.844423936634618 0.000000000000001
0.354 -1.848902000605436 -1.848902000605438 0.000000000000001
-0.120 -1.522132836716183 -1.522132836716183 0.000000000000000
-0.568 -1.350335032174416 -1.350335032174416 0.000000000000000
-0.885 -0.941581028045424 -0.941581028045419 0.000000000000005

Table IV



On the solution of integral equations of the first kind... 139

6 Conclusion

Two quadrature formulae for evaluating singular integral equations of the

first kind and in the form

∫ 1

−1

φ(x)

x − s
dx = g(s) have been developed. The

outcomes of the numerical experiment indicate that the formulae are excel-
lent and competitive. Whereas the paper in [2] needed n = 20 to achieve an
accuracy of 10−16, we only needed n = 6 to achieve the same accuracy.
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