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1 Introduction 

Let z = x+iy be a complex number. The  Riemann 

zeta function, denoted by ζ(z), is defined by 
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with x > 1. Euler proved that 

 2n

2n
 

is always a rational number for every whole number 

n. However, he was unable to determine whether

 
3

3

 is rational or not. This problem has remained 

unsolved for over 300 years. Using the LLL 

(Lenstra, Lenstra, Lovasz [2]) algorithm and Maple, 

we tackle the above problem but remain realistic 

and hope to gain new insights. In addition, Euler [6] 

represented ζ(2) as 
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In this article, we find a similar new representation 

for ζ(3) in terms of 
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using a previous paper of the author [1] and the 

Computer Algebra System Maple. The  importance 

of the result is also due to the fact that 
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converges more rapidly than
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 which is 

still an unknown constant. 
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Proof. a) Let x=e
-t
. Then expand the denominator as 

an infinite series and integrate term by term.  

b) Splitting n into even and odd, say n=2k or 

n=2k+1 we get 
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Combining this with (3), we can write 
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By (2) we can now write this as 
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and the proof of the theorem is complete.  
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In [1] the author found the following representation: 
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At this point it is natural to hope to express 
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 in terms of π
2
 only, given the shift by 2 of an 

already known series, which would give an 

amazingly pretty result. However, the exact value 

of the above simply looking series is a difficult 

open problem and the series
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is known 

also as
 
 1 

1

3
 . As a result, we turned to Maple 

hoping to discover a numerical relation (which does 

not, in general of course, constitute a proof since 

the computer operates on rational approximations 

of numbers). To do so, we used "Integer relation 

algorithms" which are main tools for 

computer-assisted mathematics:  

Definitions. Let 
nr    be a given vector. We say 

that the vector 
nc   is an  integer relation for 

r if
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with at least one non-zero ck . An integer relation 

algorithm searches therefore for such a non-zero 

vector c.  

Here we use the available LLL (Lenstra, Lenstra, 

Lovasz [2]) algorithm which is implemented in 

Maple and known there as the lattice-based 

relations algorithm. For this to be successful we 

must have some idea of the result sought. Let us say 

that we want the value (identity) of: 

 


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3


2
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 We might expect a multiple of π
2
. So we use Maple 

(the command  evalf means evaluate using 

floating-point arithmetic,  trunc stands for 

truncate):  

>digits:=20; 

a:=evalf(sum(1/(n+1/3)2,n=0..infinity)); 

b:=evalf(sum(1/(n+1/3)2,n=-infinity..-1)); 

c:=evalf(Pi2 ); 

Digits := 20 a := 10.095597125427094082, b := 

3.0638754093587174100, c := 

9.8696044010893586191  

>A:= trunc(1010 *a); B:= trunc(1010 *b); C:= 

trunc(1010 *c);  

A := 100955971254, B := 30638754093, C := 

98696044010  

>v1:= [A,1,0,0]; v2:= [B,0,1,0]; v3:= [C,0,0,1]; v1 

:= [100955971254, 1, 0, 0]; v2 := [30638754093, 0, 

1, 0]; v3 := [98696044010, 0, 0, 1]  

>readlib(lattice): >lattice([v1,v2,v3], integer); 

[[-1, -3, -3, 4],[-137597, 9200, 17061, 

-14707],[59610, -90913, 137944, 50172]]  

This outcome can be tested again with Maple: 
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>evalf(-3* sum(1/(n+1/3)2,n=0..infinity)-3* 

sum(1/(n+1/3)2, n=-infinity..-1)+4*Pi2 ); 

0 

Note that the point of the LLL algorithm is to find 

vectors whose components are small. As a result, 

we can write 
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We can try now to validate the discovered result 

with a proof. Actually, we shall give four different 

proofs each being unique in its ideas and is from a 

different area of mathematics:  

 Proof 1 (Residue Theory proof). Let
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Maple.  

Proof 2 (Representation proof). A positive integer 

n can be represented as 3k, 3k-1, or 3k-2 where k is a 

positive integer. Thus 
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In the second series, let k=m+1. Then 
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Observe that the above terms are terms of the series
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The next proof is very general which, in addition, 

leads to a quite simple proof of an extremely 

important corollary giving Euler's explicit formulas 

for ζ(2k) as we shall see. 

 Proof 4 (Most general). The series
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converges uniformly on each compact subset of the 

plane that avoids the integers. To see this, let A be 

such set which we can always enclose in an open 

disk centered at (0,0) of some radius R. Now for  
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each point z of A, we have n  z  n  z   n  R

and for each integer t > R we then have for integers 
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series and converges to 0 as t tends to infinity and 

since this does not depend on z, the convergence is 

uniform on A. Next, since the series 

2)(

1

zn 





 

converges absolutely on its domain of definition, 

we can replace n by n+1 below to get 


 

 1

n   z  1 
2
   

 1

 n  1   z  1 
2
 

 

 1

n  z
2


 

Now let b>0 and let z=x+iy with 
y  b Let k be the 

integral part of x. Then 

 
 

 1

 n   x  iy 
2
   

 

 1

 n   x  p  iy 
2


 limd t 
t

d 1

 n   x  p  iy 
2


 limd t
t

d 1

 n   x  p  iy  
2

 


 1

n  x  p  iy
2

 
1

 1

n  x  p  iy
2
 

0

 1

  n  x  p  iy
2


1

 1

 n  1
2
 b

2
 

0

 1

n
2
 b

2
 2

0

 1

n
2
 b

2


 

Next the function 

g z  
 

 1

 n  z
2


2

sin2 z
 

is holomorphic except on the integers and satisfies 


 

 1

 n   z  1 
2


2

sin2  z  1
 

 

 1

 n  z
2


2

sin2 z  

and 

 
 

 1

 n  z
2



2

sin
2

z

 
0

 1

b
2
 n

2


2
2

 e
b
 e
 b


2

 

which tends to 0 when b tends to infinity. So the 

function 

g z  
 

 1

 n  z
2


2

sin2 z
 

is bounded on 01  i   and thus on C  . Thus 

the function g is constant; since g(ib) tends to 0 as 

b tends to infinity, g must be the zero function. 

Thus 


 

 1

 n  z
2


2

sin2 z
 

from which we get (take the special case z= 2/3 ) 


 

 1

 3n  2
2


42

27


 

That is, 


 

 1

 3n  1
2


42

27


 

Corollary.

 


k  1

 1

k
2n


  1
n  1

2
2n  1

B2n
2n

 2n !

, where 

Bn  denote the Bernoulli numbers defined by 

z

ez  1
 

0



Bn
z n

n!


 

Proof. The function 
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


 


22

2

)(

1

sin znz


 

is the derivative of 

1

z


1




1

z  n


1

z  n
  cot z

 

and this derivative is zero. This implies that

 

cot z 
1

z
 

1




1

z  n


1

z  n


 is constant and, 

moreover, it turns out that this constant is 0. 

Therefore, 

z cot z  1  
1

 2z
2

z
2
 k

2


 

Let an  be the coefficient of z
n
 in the power series 

expansion of the function z cot z. Since 

an 
1

2i



z   r

dz

z n  1


1

2i 
k  1





z   r

2z 1  ndz

z 2 k
2

 

for every n=0,1,2,…, a0 = 1 and an = 0 for odd 

n. Now for even n we have 

an  2 
k  1

 1

k
n


 

Comparing with the power series expansion 

z cot z  1  
1

   4
n
B2n

2nz 2n

 2n !


 

we get 


k  1

 1

k
2n


  1

n  1
B2n2

2n  1
2n

2n !


 

 

  

3 Concluding comments 

 Even though
 
 6 

6

945
, extensive computation [3] 

has ruled out finding moderately sized integers 

a and b such that

 












1 6

.
2

1
)6(

n

n
n

b

a
  

 In 1979, Apéry proved that ζ(3) is irrational but it 

remains open whether

 

3

3

 is irrational (the feeling 

is that it is because extensive computation has been 

done to suggest that if
 
 3 

a

b
3 for some 

integers a and b, then a and b are astronomically 

large). It would therefore be very interesting, 

though very difficult, to look for an identity for 

ζ(3) in terms of π
3
, possibly searching for an 

irrational constant c  (involving log 2) such that 

ζ(3)= cπ
3
 since Euler himself has conjectured (see, 

for instance, [4, p. 1078] or [5, p. 149]) that for odd 
n n  f n log 2 n   
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