JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 199, 469—-477 (1996)
ARTICLE NO. 0154

On Approximation by a Nonfundamental Sequence
of Translates

Badih Ghusayni

Department of Mathematics, Southern Illinois University, Carbondale, Illinois
62901-4408

Communicated by E. W. Cheney

Received January 27, 1994

If f(¢) and its Fourier transform F(¢) satisfy some growth conditions and if {c,);
is a sequence of distinct real numbers satisfying a certain separation condition, we
represent those functions g(#) which are in the closure of the linear span of a
nonfundamental sequence {f(c, — )} in L,(R). A result about the degree of
approximation is also proved.  © 1996 Academic Press, Inc.

Let ¥ denote the sum with index from 0 to «, ¥’ denote the sum with
nonvanishing denominator, and T1%* denote the product with the k term
deleted.

Given a function f(¢), the Fourier transform F(x) is defined as

F(x) = (27T)‘1/2fRexp(m)f(t) dr.

A sequence of functions is fundamental in a space X if the linear span
of the elements of the sequence is dense in X. Wiener’s classical Taube-
rian Theorem [6] states that if f(¢) € L,(R) then the linear span of the set
{f(c =)}, cg is dense in L,(R) if and only if F(z) # 0 a.e. The natural
problem as to under what conditions the linear span of sequence {f(c, — 1)}
is dense in L,(R) has been studied by Zalik [7] and Faxén [5] among
others.

Suppose that f(¢) is a continuous function in L,(R). Assuming that {c,}
is a sequence of distinct real numbers such that [c? — ¢?| > pln — rl(p >
0), Y(1/c?) <, and f(t) and F(t) are functions satisfying f(z) =
Olexp(—at?)}, F(1) = Olexp(—at®)} as t — »,exp(—bt?)/F(t) € L,(R)
(a, a, and b some positive numbers), Zalik [1] found a representation for
those functions g(z) which are in the closure of the linear span of a
nonfundamental sequence in L,(R) of the form {f(c, — )}. It is notewor-
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thy here that Y'(1/c¢?) < « and exp(—bt?)/F(t) € L,(R) imply the non-
fundamentality of the sequence [5, p. 273, Theorem 2].

In this paper we assume that {c,} is a sequence of distinct real numbers
satisfying the separation condition

[le,I” = lc, || = pln —rl

for some integer p >0 (p > 0), ¥'(1/|c,|”) <~ and f(¢) and F(¢) are
functions satisfying

f(1) = Of{exp(—at?)},
exp( —bt?)

F(t) = Ofexp(—at?)} as |t| - e, O

€ L,(R).

Under the previous conditions we obtain the following result:

LEMMA. For every p such that 0 < u < 1/2b, there are continuous
functions 1,( p, t) having Fourier transforms m,( ., t), such that

@ If h(t) = exp(—bt2) /|F(1)), then

1
[m ()] sdexp{—(— —b)t2 +
2p

cZ + legl? A
T) (1),

where d is independent of k.

b)) [l Of(c, — ) dt = [gm(u, E(t) dt = 5, where F (1) is
the Fourier transform of f(c, — t).

(©) Forg(t) € L,(R), let

bi(g) = lek( ) g(t) dt.

Then, for every 0 < 8 < a, there is a value of p with 0 < uw < 1/2b and a
number vy such that for all real t

2 + |cn|”)

b.(8)f(c, — )] < cligl. eXp(—S + ytz),

where c is independent of n, and if for this value of u, S(g,t) = Lb,(g)f(c,
— 1), then |S(g, )l < M(0)llgll,, where
e +1c,|”
5 .

M(t) = cexp(yt?) ) exp( )
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Using the lemma, we obtain the following representation:

THEOREM 1.  Suppose S is the linear span of {f(c,, — 1)} and g(t) is in the
L,(R) closure of S. Then there exists a sequence {b,} of real numbers such that

g(t) =Y. b,f(c,—t) ae.onR.

The proof of Theorem 1 will be omitted since it is identical to that of
Zalik [1, p. 262, Theorem 1].
Finally we obtain the following result on the degree of approximation:

THEOREM 2.  Let g(t) be a function in the L,(R) closure of S. Let (A, B)
be a bounded interval, g(t) be continuous on (A, B), and d, denote the
uniform distance from g(t) to the span of {f(c, —t): r=20,1,...,n} in
(A, B). Then for any 0 < 8 < a, there is a positive number D (independent
of n and g) such that

d, < Dligll, exp(—8pn).

Proof of Lemma. We shall only prove (a) because the proofs of (b) and
(c) are identical to those of Zalik [1].

We shall only consider the case in which ¢, # 0 for all n, with the other
case being similar. Moreover, we shall only consider the case in which p is
even (the case p is odd is similar in which the last exponent below is
A /pXz/lc,|")P).

Let

”“)zrrﬁl_w}J

Then

&uﬂu—n=IT“@— ﬁJ

z \? 2 z \P7?
X + ot
“p(mw) p—thv)

=r(z).
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But for any positive number &, an application of Luxemburg and Korevaar
[2, p. 33, Lemma 7.2] with A, = |c,,|” shows that

2p p
* lekl exp(—&)lel
1- > as |c,| — .
M -r P k
Now
2p 2p 2 p(p—2)
p *) eyl Ck Ck
re(le = 1- expy|—| + -+ —
Irlled )| = T = o2, r-2|c,
e, |27
> l—I(k) _ k .
e, |7
So
exp(—elc,|?
r(led”)| = exp(eled”) e, | = .

|Ck|p
In particular, for ¢ = n/2,

exp(—(m/2)le,l”)

|Ck|p

re(led”) | = as ¢, | — oo,

Thus

n )
eXp{E|Ck|p}|rk(|ck|p)| > e, I7?

as [c,| = .
Hence, there is a positive number D such that

exp{%lcklp}|rk(|ck|”)| > D. (1)

If n,(r) denotes the number of elements in the sequence {c,: n # k}
within the disk of radius r and n(r) denotes the number of elements in the
sequence {c,}, then clearly n,(r) < n(r). Setting |z| = r and applying to
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P,(z) the same technique as in the proof of Boas [3, pp. 29-30, Lemma
2.10.13], we see that

log| P(z)| < Kr?~* frff’nk(t) dr + Krf’fmfl’*lnk(t) dt
0 r
< KrP7t frfpn(t) dr + Krpfwfpfln(t) dr.
0 r

Then log| P.(2)| = o(r?) and similarly log| P,(—2z)| = o(r?) uniformly for k.
Thus

log| P (z)| + log| P.(—2z)| = o(r?)  forall k.

Therefore
log| P (z) P, (—z)| =o(r?)  forall k.
Then
log|r,(z)| = o(r?) for all k.
So
Iog|:+(z)| =o0(1) for all k.

Consequently, there is a function u(r) such that lim u(r) = 0 as r — o,
and

r(2)| < exp{u(r)r’} (2)

for all k and all complex numbers z.
Set

@(p z) = exp{ (2 2)} ,:]h(;))

Clearly g,(u, c,) = 8, (the case p is odd is treated using the definition
r(z) = P(2)P(—2)).
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Now

fR|Qk( My X + i) |2 dx

)
)

|2

r |rk((x + iy)p)
[re(led”) [
2 |rk((x + iy)p)

[re(lel”) [

|2

exp( — %((x +iy)’ — c,ﬁ))

|2

L
2

exp{— (x> =y —ci + 21xy)}

|rk((x + iy)p)
|rk(|ck|p)|2

|rk((x + iy)p)
[r(led”) [’

= [ol-n(x ~y - )

|2

= fRexp{,u(y2 + c2)fexp{ — pnx?}
Now using (1) and (2) an easy calculation shows that

[JanCrx + ) dr < df exp{u(y? +le,l” + c)},

where d, is independent of k.
Similarly,

G+ 0)anCanx+ i) [ ds
< ddexp{n(y? + le ? + )}

where d, is independent of k.

Now, by Boas [3, p. 29, Lemma 2.10.13], P.(z) and consequently P,(—z)
is of growth (p, 0). Thus r,(z) is of growth (p, 0). It is therefore easy to see
that

(1. 2) = O(exp{—alx”"})

as |x| — o on any strip of the form |y| < §.



SEQUENCE OF TRANSLATES 475

By Titchmarch [4, p. 44, Theorem 26] applied to ¢,( u, 1), it is easy to see
that there is an entire function 4, (., ¢) such that 4,(u,?) is in L,(R) and
q,.(w, 2) is the Fourier transform of A,( u, t).

Moreover, i, ( u,t) is continuous and for real values ¢

et + ey l?
2 L
where d is independent of k.
Let w <1/2b and let m,(u, 1) = h (u, 1) /F(2).
Since

t2

|hk(;u,t)|sdexp{—2— +
n

exp( —bt?)
" TR

it follows that

| 0= [he(w )] | t) [A(2)

m(p,t)| = |F(1)] N exp(—bt?)
CIE + |Ck|p 5
T) (1),

2+

1
sdexp{—(z— —-b
i3

where d is independent of k. Finally let /,(¢) be the inverse transform of
m,(t).

Proof of Theorem 2. By Theorem 1, we have S(g,7) = g(¢) ae. on R.
But from part (c) of the Lemma and the continuity of f(c, — 1), it follows
that S(g, ¢) is continuous on R and therefore S(g,¢) = g(¢) a.e. on (A4, B).
Thus, Xb(g)f(c, —t) =g(t) ae. on (4,B). If t €(A,B) and W? =
max{ A2, B?}, then

r

[b(&)f(e, = 0)] = gl exp(—s(ﬁ) + wZ)

c? +lc,l?

< c2||g||2 exp( _S(T

+ sz).
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Consequently,

< Y b(g) (e, — 1)

n+1

c? +lc,l”
2
oc

2 —8lcyl”? * 5
= c?exp(yW?)exp 5 |ee| ligll, 3 exp{—E(cf—cg)}

2 n+1

d, <

g(1) - %br(g)f(cr 1)

< cigll, exp(yW?) 3 exp(—8

n+1

o
xexp{—5(|cr|P — |c0|p)}
2 2 8 2
< c’exp(yW )exp{— E(c0 + |c0|p)}||g||z

- 9] 0
X ) exp{— —pr}exp{ - —pr}
n+1 2 2

<]

o
= ¢? exp(yWZ)exp{— 5(c§ + |co|p)}||g||2 Y. exp{—8pr)

n+1
exp{ — dpn}

8
_ 2 exp(sz)eXp{ _ E(cg + |co|1’)}||g||2W.
Let

_cZexp(yW?)exp{—(8/2)(cf +leol”))
a exp(dp) — 1

Note that D is a positive number (independent of » and g) and that

d, < Dllgll, exp{ —pn}.

Remark. The above results generalize Zalik’s results as one can see by
taking p = 2.
ACKNOWLEDGMENT

This is a concise summary of a chapter in my Ph.D. dissertation. 1 am very grateful to
Professor Richard A. Zalik, my Advisor, for his assistance and thoughtfulness.



SEQUENCE OF TRANSLATES 477

REFERENCES

. R. A. Zalik, Approximation by nonfundamental sequence of translates, Proc. Amer. Math.
Soc. 78 (1980), 261-266.

. W. A. J. Luxemburg and J. Korevaar, Entire functions and Muntz type approximation,
Trans. Amer. Math. Soc. 157 (1971), 23-37.

. R. P. Boas, “Entire Functions,” Academic Press, New York, 1954.

. E. C. Titchmarch, “Introduction to the Theory of Fourier Integrals,” 2nd ed., Oxford Univ.
Press, London, 1948; reprint, 1967.

. B. Faxén, On approximation by translates and related problems in function theory, Ark.
Mat. 19 (1981), 271-289.

. N. Wiener, “The Fourier Integral and Certain of Its Applications,” Cambridge Univ.
Press, Cambridge, 1933; reprint, Dover, New York, 1958.

. R. A. Zalik, On approximation by shifts and a theorem of Wiener, Trans. Amer. Math.
Soc. 243 (1978), 299-308.



