On A pproximation by a Nonfundamental Sequence of Translates

Badih Ghusayni
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901-4408

Communicated by E. W. Cheney
R eceived J anuary 27, 1994

Abstract

If $f(t)$ and its Fourier transform $F(t)$ satisfy some growth conditions and if $\left\{c_{n}\right\}_{0}^{\infty}$ is a sequence of distinct real numbers satisfying a certain separation condition, we represent those functions $g(t)$ which are in the closure of the linear span of a nonfundamental sequence $\left\{f\left(c_{n}-t\right)\right\}$ in $L_{2}(\mathbf{R})$. A result about the degree of approximation is also proved. © 1996 A cademic Press, Inc.

Let Σ denote the sum with index from 0 to ∞, Σ^{\prime} denote the sum with nonvanishing denominator, and $\Pi^{(k)}$ denote the product with the k term deleted.

Given a function $f(t)$, the Fourier transform $F(x)$ is defined as

$$
F(x)=(2 \pi)^{-1 / 2} \int_{\mathbf{R}} \exp (x t i) f(t) d t .
$$

A sequence of functions is fundamental in a space X if the linear span of the elements of the sequence is dense in X. Wiener's classical Tauberian Theorem [6] states that if $f(t) \in L_{2}(\mathbf{R})$ then the linear span of the set $\{f(c-t)\}_{c \in \mathbf{R}}$ is dense in $L_{2}(\mathbf{R})$ if and only if $F(t) \neq 0$ a.e. The natural problem as to under what conditions the linear span of sequence $\left\{f\left(c_{n}-t\right)\right\}$ is dense in $L_{2}(\mathbf{R})$ has been studied by Zalik [7] and Faxén [5] among others.

Suppose that $f(t)$ is a continuous function in $L_{2}(\mathbf{R})$. A ssuming that $\left\{c_{n}\right\}$ is a sequence of distinct real numbers such that $\left|c_{n}^{2}-c_{r}^{2}\right| \geq \rho|n-r|(\rho>$ 0), $\Sigma^{\prime}\left(1 / c_{n}^{2}\right)<\infty$, and $f(t)$ and $F(t)$ are functions satisfying $f(t)=$ $O\left\{\exp \left(-\alpha t^{2}\right)\right\}, \quad F(t)=O\left\{\exp \left(-a t^{2}\right)\right\}$ as $t \rightarrow \infty, \exp \left(-b t^{2}\right) / F(t) \in L_{2}(\mathbf{R})$ (α, a, and b some positive numbers), Zalik [1] found a representation for those functions $g(t)$ which are in the closure of the linear span of a nonfundamental sequence in $L_{2}(\mathbf{R})$ of the form $\left\{f\left(c_{n}-t\right)\right\}$. It is notewor-
thy here that $\Sigma^{\prime}\left(1 / c_{n}^{2}\right)<\infty$ and $\exp \left(-b t^{2}\right) / F(t) \in L_{2}(\mathbf{R})$ imply the nonfundamentality of the sequence [5, p. 273, Theorem 2].

In this paper we assume that $\left\{c_{n}\right\}$ is a sequence of distinct real numbers satisfying the separation condition

$$
\left|\left|c_{n}\right|^{p}-\left|c_{r}\right|^{p}\right| \geq \rho|n-r|
$$

for some integer $p>0(\rho>0), \Sigma^{\prime}\left(1 /\left|c_{n}\right|^{p}\right)<\infty$ and $f(t)$ and $F(t)$ are functions satisfying

$$
\begin{gathered}
f(t)=O\left\{\exp \left(-\alpha t^{2}\right)\right\}, \\
F(t)=O\left\{\exp \left(-a t^{2}\right)\right\} \text { as }|t| \rightarrow \infty, \frac{\exp \left(-b t^{2}\right)}{F(t)} \in L_{2}(\mathbf{R}) .
\end{gathered}
$$

U nder the previous conditions we obtain the following result:
Lemma. For every μ such that $0<\mu<1 / 2 b$, there are continuous functions $l_{k}(\mu, t)$ having Fourier transforms $m_{k}(\mu, t)$, such that
(a) If $h(t)=\exp \left(-b t^{2}\right) /|F(t)|$, then

$$
\left|m_{k}(\mu, t)\right| \leq d \exp \left\{-\left(\frac{1}{2 \mu}-b\right) t^{2}+\mu\left(\frac{c_{k}^{2}+\left|c_{k}\right|^{p}}{2}\right)\right\} h(t)
$$

where d is independent of k.
(b) $\int_{\mathbf{R}} l_{k}(\mu, t) f\left(c_{n}-t\right) d t=\int_{\mathbf{R}} m_{k}(\mu, t) F_{n}(t) d t=\delta_{k n}$, where $F_{n}(t)$ is the Fourier transform of $f\left(c_{n}-t\right)$.
(c) For $g(t) \in L_{2}(\mathbf{R})$, let

$$
b_{k}(g)=\int_{\mathbf{R}} l_{k}(\mu, t) g(t) d t
$$

Then, for every $0<\delta<\alpha$, there is a value of μ with $0<\mu<1 / 2 b$ and a number γ such that for all real t

$$
\left|b_{n}(g) f\left(c_{n}-t\right)\right| \leq c^{2}\|g\|_{2} \exp \left(-\delta\left(\frac{c_{n}^{2}+\left|c_{n}\right|^{p}}{2}\right)+\gamma t^{2}\right)
$$

where c is independent of n, and if for this value of $\mu, S(g, t)=\sum b_{n}(g) f\left(c_{n}\right.$ $-t)$, then $|S(g, t)| \leq M(t)\|g\|_{2}$, where

$$
M(t)=c \exp \left(\gamma t^{2}\right) \sum \exp \left(-\delta\left(\frac{c_{n}^{2}+\left|c_{n}\right|^{p}}{2}\right)\right)
$$

U sing the lemma, we obtain the following representation:
Theorem 1. Suppose S is the linear span of $\left\{f\left(c_{n}-t\right)\right\}$ and $g(t)$ is in the $L_{2}(\mathbf{R})$ closure of S. Then there exists a sequence $\left\{b_{n}\right\}$ of real numbers such that

$$
g(t)=\sum b_{n} f\left(c_{n}-t\right) \quad \text { a.e. on } \mathbf{R} .
$$

The proof of Theorem 1 will be omitted since it is identical to that of Zalik [1, p. 262, Theorem 1].

Finally we obtain the following result on the degree of approximation:
Theorem 2. Let $g(t)$ be a function in the $L_{2}(\mathbf{R})$ closure of S. Let (A, B) be a bounded interval, $g(t)$ be continuous on (A, B), and d_{n} denote the uniform distance from $g(t)$ to the span of $\left\{f\left(c_{r}-t\right): r=0,1, \ldots, n\right\}$ in (A, B). Then for any $0<\delta<\alpha$, there is a positive number D (independent of n and g) such that

$$
d_{n} \leq D\|g\|_{2} \exp (-\delta \rho n) .
$$

Proof of Lemma. We shall only prove (a) because the proofs of (b) and (c) are identical to those of Zalik [1].

We shall only consider the case in which $c_{n} \neq 0$ for all n, with the other case being similar. M oreover, we shall only consider the case in which p is even (the case p is odd is similar in which the last exponent below is $\left.(1 / p)\left(z /\left|c_{n}\right|^{p}\right)^{p}\right)$.

Let

$$
\begin{aligned}
P_{k}(z)= & \Pi^{(k)}\left(1-\frac{z}{\left|c_{n}\right|^{p}}\right) \\
& \times \exp \left\{\frac{z}{\left|c_{n}\right|^{p}}+\frac{1}{2}\left(\frac{z}{\left|c_{n}\right|^{p}}\right)^{2}+\cdots+\frac{1}{p-1}\left(\frac{z}{\left|c_{n}\right|^{p}}\right)^{p-1}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
P_{k}(z) P_{k}(-z)= & \prod^{(k)}\left(1-\frac{z^{2}}{\left|c_{n}\right|^{2 p}}\right) \\
& \times \exp \left\{\left(\frac{z}{\left|c_{n}\right|^{p}}\right)^{2}+\cdots+\frac{2}{p-2}\left(\frac{z}{\left|c_{n}\right|^{p}}\right)^{p-2}\right\} \\
:= & r_{k}(z)
\end{aligned}
$$

But for any positive number ε, an application of Luxemburg and K orevaar [2, p. 33, Lemma 7.2] with $\lambda_{m}=\left|c_{m}\right|^{p}$ shows that

$$
\Pi^{(k)}\left|1-\frac{\left|c_{k}\right|^{2 p}}{\left|c_{n}\right|^{2 p}}\right| \geq \frac{\exp (-\varepsilon)\left|c_{k}\right|^{p}}{\left|c_{k}\right|^{p}} \quad \text { as }\left|c_{k}\right| \rightarrow \infty .
$$

Now

$$
\begin{aligned}
\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| & =\Pi^{(k)}\left|1-\frac{\left|c_{k}\right|^{2 p}}{\left|c_{n}\right|^{2 p}}\right| \exp \left\{\left|\frac{c_{k}}{c_{n}}\right|^{2 p}+\cdots+\frac{2}{p-2}\left|\frac{c_{k}}{c_{n}}\right|^{p(p-2)}\right\} \\
& \geq \Pi^{(k)}\left|1-\frac{\left|c_{k}\right|^{2 p}}{\left|c_{n}\right|^{2 p}}\right|
\end{aligned}
$$

So

$$
\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| \geq \frac{\exp \left(-\varepsilon\left|c_{k}\right|^{p}\right)}{\left|c_{k}\right|^{p}} \quad \text { as }\left|c_{k}\right| \rightarrow \infty
$$

In particular, for $\varepsilon=\mu / 2$,

$$
\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| \geq \frac{\exp \left(-(\mu / 2)\left|c_{k}\right|^{p}\right)}{\left|c_{k}\right|^{p}} \quad \text { as }\left|c_{k}\right| \rightarrow \infty
$$

Thus

$$
\exp \left\{\frac{\mu}{2}\left|c_{k}\right|^{p}\right\}\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| \geq\left|c_{k}\right|^{-p}
$$

as $\left|c_{k}\right| \rightarrow \infty$.
Hence, there is a positive number D such that

$$
\begin{equation*}
\exp \left\{\frac{\mu}{2}\left|c_{k}\right|^{p}\right\}\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| \geq D \tag{1}
\end{equation*}
$$

If $n_{k}(r)$ denotes the number of elements in the sequence $\left\{c_{n}: n \neq k\right\}$ within the disk of radius r and $n(r)$ denotes the number of elements in the sequence $\left\{c_{n}\right\}$, then clearly $n_{k}(r) \leq n(r)$. Setting $|z|=r$ and applying to
$P_{k}(z)$ the same technique as in the proof of Boas [3, pp. 29-30, Lemma 2.10.13], we see that

$$
\begin{aligned}
\log \left|P_{k}(z)\right| & \leq K r^{p-1} \int_{0}^{r} t^{-p} n_{k}(t) d t+K r^{p} \int_{r}^{\infty} t^{-p-1} n_{k}(t) d t \\
& \leq K r^{p-1} \int_{0}^{r} t^{-p} n(t) d t+K r^{p} \int_{r}^{\infty} t^{-p-1} n(t) d t .
\end{aligned}
$$

Then $\log \left|P_{k}(z)\right|=o\left(r^{p}\right)$ and similarly $\log \left|P_{k}(-z)\right|=o\left(r^{p}\right)$ uniformly for k. Thus

$$
\log \left|P_{k}(z)\right|+\log \left|P_{k}(-z)\right|=o\left(r^{p}\right) \quad \text { for all } k .
$$

Therefore

$$
\log \left|P_{k}(z) P_{k}(-z)\right|=o\left(r^{p}\right) \quad \text { for all } k .
$$

Then

$$
\log \left|r_{k}(z)\right|=o\left(r^{p}\right) \quad \text { for all } k .
$$

So

$$
\frac{\log \left|r_{k}(z)\right|}{r^{p}}=o(1) \quad \text { for all } k
$$

Consequently, there is a function $u(r)$ such that $\lim u(r)=0$ as $r \rightarrow \infty$, and

$$
\begin{equation*}
\left|r_{k}(z)\right| \leq \exp \left\{u(r) r^{p}\right\} \tag{2}
\end{equation*}
$$

for all k and all complex numbers z.
Set

$$
q_{k}(\mu, z)=\exp \left\{-\frac{\mu}{2}\left(z^{2}-c_{k}^{2}\right)\right\} \frac{r_{k}\left(z^{p}\right)}{r_{k}\left(\left|c_{k}\right|^{p}\right)} .
$$

Clearly $q_{k}\left(\mu, c_{n}\right)=\delta_{k n}$ (the case p is odd is treated using the definition $r_{k}(z)=P_{k}(z) P_{k}(-z)$).

Now

$$
\begin{aligned}
& \int_{\mathbf{R}}\left|q_{k}(\mu, x+i y)\right|^{2} d x \\
&=\int_{\mathbf{R}}\left|\exp \left(-\frac{\mu}{2}\left((x+i y)^{2}-c_{k}^{2}\right)\right)\right|^{2} \frac{\left|r_{k}\left((x+i y)^{p}\right)\right|^{2}}{\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right|^{2}} d x \\
&=\int_{\mathbf{R}}\left|\exp \left\{-\frac{\mu}{2}\left(x^{2}-y^{2}-c_{k}^{2}+2 i x y\right)\right\}\right|^{2} \frac{\left|r_{k}\left((x+i y)^{p}\right)\right|^{2}}{\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right|^{2}} d x \\
&=\int_{\mathbf{R}} \exp \left\{-\mu\left(x^{2}-y^{2}-c_{k}^{2}\right)\right\} \frac{\left|r_{k}\left((x+i y)^{p}\right)\right|^{2}}{\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right|^{2}} d x \\
&=\int_{\mathbf{R}} \exp \left\{\mu\left(y^{2}+c_{k}^{2}\right)\right\} \exp \left\{-\mu x^{2}\right\} \frac{\left|r_{k}\left((x+i y)^{p}\right)\right|^{2}}{\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right|^{2}} d x .
\end{aligned}
$$

Now using (1) and (2) an easy calculation shows that

$$
\int_{\mathbf{R}}\left|q_{k}(\mu, x+i y)\right|^{2} d x \leq d_{1}^{2} \exp \left\{\mu\left(y^{2}+\left|c_{k}\right|^{p}+c_{k}^{2}\right)\right\}
$$

where d_{1} is independent of k.
Similarly,

$$
\begin{aligned}
& \int_{\mathbf{R}}\left|(x+i y) q_{k}(\mu, x+i y)\right|^{2} d x \\
& \quad \leq d_{2}^{2} \exp \left\{\mu\left(y^{2}+\left|c_{k}\right|^{p}+c_{k}^{2}\right)\right\}
\end{aligned}
$$

where d_{2} is independent of k.
Now, by Boas [3, p. 29, Lemma 2.10.13], $P_{k}(z)$ and consequently $P_{k}(-z)$ is of growth $(p, 0)$. Thus $r_{k}(z)$ is of growth $(p, 0)$. It is therefore easy to see that

$$
q_{k}(\mu, z)=O\left(\exp \left\{-\alpha|x|^{p-1}\right\}\right)
$$

as $|x| \rightarrow \infty$ on any strip of the form $|y|<\delta$.

By Titchmarch [4, p. 44, Theorem 26] applied to $q_{k}(\mu, t)$, it is easy to see that there is an entire function $h_{k}(\mu, t)$ such that $h_{k}(\mu, t)$ is in $L_{2}(\mathbf{R})$ and $q_{k}(\mu, z)$ is the Fourier transform of $h_{k}(\mu, t)$.

M oreover, $h_{k}(\mu, t)$ is continuous and for real values t

$$
\left|h_{k}(\mu, t)\right| \leq d \exp \left\{-\frac{t^{2}}{2 \mu}+\mu\left(\frac{c_{k}^{2}+\left|c_{k}\right|^{p}}{2}\right)\right\}
$$

where d is independent of k.
Let $\mu<1 / 2 b$ and let $m_{k}(\mu, t)=h_{k}(\mu, t) / F(t)$.
Since

$$
h(t)=\frac{\exp \left(-b t^{2}\right)}{|F(t)|}
$$

it follows that

$$
\begin{aligned}
\left|m_{k}(\mu, t)\right| & =\frac{\left|h_{k}(\mu, t)\right|}{|F(t)|}=\frac{\left|h_{k}(\mu, t)\right| h(t)}{\exp \left(-b t^{2}\right)} \\
& \leq d \exp \left\{-\left(\frac{1}{2 \mu}-b\right) t^{2}+\mu\left(\frac{c_{k}^{2}+\left|c_{k}\right|^{p}}{2}\right)\right\} h(t),
\end{aligned}
$$

where d is independent of k. Finally let $l_{k}(t)$ be the inverse transform of $m_{k}(t)$.

Proof of Theorem 2. By Theorem 1, we have $S(g, t)=g(t)$ a.e. on R. But from part (c) of the Lemma and the continuity of $f\left(c_{n}-t\right)$, it follows that $S(g, t)$ is continuous on \mathbf{R} and therefore $S(g, t)=g(t)$ a.e. on (A, B). Thus, $\sum b_{r}(g) f\left(c_{r}-t\right)=g(t)$ a.e. on (A, B). If $t \in(A, B)$ and $W^{2}=$ $\max \left\{A^{2}, B^{2}\right\}$, then

$$
\begin{aligned}
\left|b_{r}(g) f\left(c_{r}-t\right)\right| & \leq c^{2}\|g\|_{2} \exp \left(-\delta\left(\frac{c_{r}^{2}+\left|c_{r}\right|^{p}}{2}\right)+\gamma t^{2}\right) \\
& \leq c^{2}\|g\|_{2} \exp \left(-\delta\left(\frac{c_{r}^{2}+\left|c_{r}\right|^{p}}{2}\right)+\gamma W^{2}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
d_{n} & \leq\left|g(t)-\sum_{0}^{n} b_{r}(g) f\left(c_{r}-t\right)\right| \leq \sum_{n+1}^{\infty}\left|b_{r}(g) f\left(c_{r}-t\right)\right| \\
& \leq c^{2}\|g\|_{2} \exp \left(\gamma W^{2}\right) \sum_{n+1}^{\infty} \exp \left(-\delta\left(\frac{c_{r}^{2}+\left|c_{r}\right|^{p}}{2}\right)\right)
\end{aligned}
$$

$$
=c^{2} \exp \left(\gamma W^{2}\right) \exp \left(-\frac{\delta c_{0}^{2}}{2}\right) \exp \left(\frac{-\delta\left|c_{0}\right|^{p}}{2}\right)\|g\|_{2} \sum_{n+1}^{\infty} \exp \left\{-\frac{\delta}{2}\left(c_{r}^{2}-c_{0}^{2}\right)\right\}
$$

$$
\times \exp \left\{-\frac{\delta}{2}\left(\left|c_{r}\right|^{p}-\left|c_{0}\right|^{p}\right)\right\}
$$

$$
\leq c^{2} \exp \left(\gamma W^{2}\right) \exp \left\{-\frac{\delta}{2}\left(c_{0}^{2}+\left|c_{0}\right|^{p}\right)\right\}\|g\|_{2}
$$

$$
\times \sum_{n+1}^{\infty} \exp \left\{-\frac{\delta}{2} \rho r\right\} \exp \left\{-\frac{\delta}{2} \rho r\right\}
$$

$$
=c^{2} \exp \left(\gamma W^{2}\right) \exp \left\{-\frac{\delta}{2}\left(c_{0}^{2}+\left|c_{0}\right|^{p}\right)\right\}\|g\|_{2} \sum_{n+1}^{\infty} \exp \{-\delta \rho r\}
$$

$$
=c^{2} \exp \left(\gamma W^{2}\right) \exp \left\{-\frac{\delta}{2}\left(c_{0}^{2}+\left|c_{0}\right|^{p}\right)\right\}\|g\|_{2} \frac{\exp \{-\delta \rho n\}}{\exp (\delta \rho)-1}
$$

Let

$$
D=\frac{c^{2} \exp \left(\gamma W^{2}\right) \exp \left\{-(\delta / 2)\left(c_{0}^{2}+\left|c_{0}\right|^{p}\right)\right\}}{\exp (\delta \rho)-1}
$$

Note that D is a positive number (independent of n and g) and that

$$
d_{n} \leq D\|g\|_{2} \exp \{-\delta \rho n\}
$$

Remark. The above results generalize Zalik's results as one can see by taking $p=2$.

ACKNOWLEDGMENT

This is a concise summary of a chapter in my Ph.D. dissertation. I am very grateful to Professor Richard A. Zalik, my A dvisor, for his assistance and thoughtfulness.

REFERENCES

1. R.A. Zalik, A pproximation by nonfundamental sequence of translates, Proc. Amer. Math. Soc. 78 (1980), 261-266.
2. W. A. J. Luxemburg and J. Korevaar, Entire functions and M untz type approximation, Trans. Amer. Math. Soc. 157 (1971), 23-37.
3. R. P. Boas, "E ntire Functions," A cademic Press, N ew Y ork, 1954.
4. E. C. Titchmarch, "Introduction to the Theory of Fourier Integrals," 2nd ed., Oxford Univ. Press, London, 1948; reprint, 1967.
5. B. Faxén, On approximation by translates and related problems in function theory, Ark. Mat. 19 (1981), 271-289.
6. N. Wiener, "The Fourier Integral and Certain of Its Applications," Cambridge Univ. Press, Cambridge, 1933; reprint, D over, N ew Y ork, 1958.
7. R. A. Zalik, On approximation by shifts and a theorem of Wiener, Trans. Amer. Math. Soc. 243 (1978), 299-308.
