On Approximation by a Nonfundamental Sequence of Translates

Badih Ghusayni

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901-4408

Communicated by E. W. Cheney

Received January 27, 1994

If f(t) and its Fourier transform F(t) satisfy some growth conditions and if $\{c_n\}_{0}^{Y_0}$ is a sequence of distinct real numbers satisfying a certain separation condition, we represent those functions g(t) which are in the closure of the linear span of a nonfundamental sequence $\{f(c_n-t)\}$ in $L_2(\mathbf{R})$. A result about the degree of approximation is also proved. © 1996 Academic Press, Inc.

Let Σ denote the sum with index from 0 to ∞ , Σ' denote the sum with nonvanishing denominator, and $\Pi^{(k)}$ denote the product with the k term deleted.

Given a function f(t), the Fourier transform F(x) is defined as

$$F(x) = (2\pi)^{-1/2} \int_{\mathbf{R}} \exp(xti) f(t) dt.$$

A sequence of functions is fundamental in a space X if the linear span of the elements of the sequence is dense in X. Wiener's classical Tauberian Theorem [6] states that if $f(t) \in L_2(\mathbf{R})$ then the linear span of the set $\{f(c-t)\}_{c \in \mathbf{R}}$ is dense in $L_2(\mathbf{R})$ if and only if $F(t) \neq 0$ a.e. The natural problem as to under what conditions the linear span of sequence $\{f(c_n-t)\}$ is dense in $L_2(\mathbf{R})$ has been studied by Zalik [7] and Faxén [5] among others.

Suppose that f(t) is a continuous function in $L_2(\mathbf{R})$. Assuming that $\{c_n\}$ is a sequence of distinct real numbers such that $|c_n^2 - c_r^2| \ge \rho |n - r| (\rho > 0)$, $\sum' (1/c_n^2) < \infty$, and f(t) and F(t) are functions satisfying $f(t) = O\{\exp(-\alpha t^2)\}$, $F(t) = O\{\exp(-at^2)\}$ as $t \to \infty$, $\exp(-bt^2)/F(t) \in L_2(\mathbf{R})$ (α , a, and b some positive numbers), Zalik [1] found a representation for those functions g(t) which are in the closure of the linear span of a nonfundamental sequence in $L_2(\mathbf{R})$ of the form $\{f(c_n - t)\}$. It is notewor-

thy here that $\Sigma'(1/c_n^2) < \infty$ and $\exp(-bt^2)/F(t) \in L_2(\mathbf{R})$ imply the non-fundamentality of the sequence [5, p. 273, Theorem 2].

In this paper we assume that $\{c_n\}$ is a sequence of distinct real numbers satisfying the separation condition

$$||c_n|^p - |c_r|^p| \ge \rho |n - r|$$

for some integer p>0 ($\rho>0$), $\Sigma'(1/|c_n|^p)<\infty$ and f(t) and F(t) are functions satisfying

$$f(t) = O\{\exp(-\alpha t^2)\},$$

$$F(t) = O\{\exp(-at^2)\} \text{ as } |t| \to \infty, \frac{\exp(-bt^2)}{F(t)} \in L_2(\mathbf{R}).$$

Under the previous conditions we obtain the following result:

LEMMA. For every μ such that $0 < \mu < 1/2b$, there are continuous functions $l_k(\mu, t)$ having Fourier transforms $m_k(\mu, t)$, such that

(a) If
$$h(t) = \exp(-bt^2)/|F(t)|$$
, then

$$\left|m_k(\mu,t)\right| \leq d \exp\left\{-\left(\frac{1}{2\mu} - b\right)t^2 + \mu\left(\frac{c_k^2 + |c_k|^p}{2}\right)\right\}h(t),$$

where d is independent of k.

- (b) $\int_{\mathbf{R}} l_k(\mu, t) f(c_n t) dt = \int_{\mathbf{R}} m_k(\mu, t) F_n(t) dt = \delta_{kn}$, where $F_n(t)$ is the Fourier transform of $f(c_n t)$.
 - (c) For $g(t) \in L_2(\mathbf{R})$, let

$$b_k(g) = \int_{\mathbf{R}} l_k(\mu, t) g(t) dt.$$

Then, for every $0 < \delta < \alpha$, there is a value of μ with $0 < \mu < 1/2b$ and a number γ such that for all real t

$$|b_n(g)f(c_n-t)| \le c^2 ||g||_2 \exp\left(-\delta\left(\frac{c_n^2+|c_n|^p}{2}\right)+\gamma t^2\right),$$

where c is independent of n, and if for this value of μ , $S(g,t) = \sum b_n(g) f(c_n - t)$, then $|S(g,t)| \leq M(t) ||g||_2$, where

$$M(t) = c \exp(\gamma t^2) \sum \exp\left(-\delta \left(\frac{c_n^2 + |c_n|^p}{2}\right)\right).$$

Using the lemma, we obtain the following representation:

THEOREM 1. Suppose S is the linear span of $\{f(c_n - t)\}$ and g(t) is in the $L_2(\mathbf{R})$ closure of S. Then there exists a sequence $\{b_n\}$ of real numbers such that

$$g(t) = \sum b_n f(c_n - t)$$
 a.e. on **R**.

The proof of Theorem 1 will be omitted since it is identical to that of Zalik [1, p. 262, Theorem 1].

Finally we obtain the following result on the degree of approximation:

Theorem 2. Let g(t) be a function in the $L_2(\mathbf{R})$ closure of S. Let (A, B) be a bounded interval, g(t) be continuous on (A, B), and d_n denote the uniform distance from g(t) to the span of $\{f(c_r - t): r = 0, 1, ..., n\}$ in (A, B). Then for any $0 < \delta < \alpha$, there is a positive number D (independent of n and g) such that

$$d_n \leq D \|g\|_2 \exp(-\delta \rho n).$$

Proof of Lemma. We shall only prove (a) because the proofs of (b) and (c) are identical to those of Zalik [1].

We shall only consider the case in which $c_n \neq 0$ for all n, with the other case being similar. Moreover, we shall only consider the case in which p is even (the case p is odd is similar in which the last exponent below is $(1/p)(z/|c_n|^p)^p$).

Let

$$\begin{split} P_k(z) &= \prod^{(k)} \biggl(1 - \frac{z}{|c_n|^p}\biggr) \\ &\times \exp\biggl\{\frac{z}{|c_n|^p} + \frac{1}{2} \biggl(\frac{z}{|c_n|^p}\biggr)^2 + \dots + \frac{1}{p-1} \biggl(\frac{z}{|c_n|^p}\biggr)^{p-1}\biggr\}. \end{split}$$

Then

$$P_k(z)P_k(-z) = \prod^{(k)} \left(1 - \frac{z^2}{|c_n|^{2p}}\right)$$

$$\times \exp\left\{\left(\frac{z}{|c_n|^p}\right)^2 + \dots + \frac{2}{p-2}\left(\frac{z}{|c_n|^p}\right)^{p-2}\right\}$$

$$:= r_k(z).$$

But for any positive number ε , an application of Luxemburg and Korevaar [2, p. 33, Lemma 7.2] with $\lambda_m = |c_m|^p$ shows that

$$\left|\prod^{(k)} \left| 1 - \frac{\left| c_k \right|^{2p}}{\left| c_n \right|^{2p}} \right| \ge \frac{\exp(-\varepsilon) \left| c_k \right|^p}{\left| c_k \right|^p} \quad \text{as } |c_k| \to \infty.$$

Now

$$\begin{aligned} \left| r_{k} (|c_{k}|^{p}) \right| &= \prod^{(k)} \left| 1 - \frac{|c_{k}|^{2p}}{|c_{n}|^{2p}} \right| \exp \left\{ \left| \frac{c_{k}}{c_{n}} \right|^{2p} + \dots + \frac{2}{p-2} \left| \frac{c_{k}}{c_{n}} \right|^{p(p-2)} \right\} \\ &\geq \prod^{(k)} \left| 1 - \frac{|c_{k}|^{2p}}{|c_{n}|^{2p}} \right|. \end{aligned}$$

So

$$\left|r_{k}\left(\left|c_{k}\right|^{p}\right)\right| \geq \frac{\exp\left(-\varepsilon\left|c_{k}\right|^{p}\right)}{\left|c_{k}\right|^{p}} \quad \text{as } \left|c_{k}\right| \to \infty.$$

In particular, for $\varepsilon = \mu/2$,

$$\left|r_k(|c_k|^p)\right| \ge \frac{\exp\left(-\left(\frac{\mu}{2}\right)|c_k|^p\right)}{\left|c_k\right|^p}$$
 as $|c_k| \to \infty$.

Thus

$$\exp\left\{\frac{\mu}{2}|c_k|^p\right\} \left|r_k\left(|c_k|^p\right)\right| \ge |c_k|^{-p}$$

as $|c_k| \to \infty$.

Hence, there is a positive number D such that

$$\exp\left\{\frac{\mu}{2}|c_k|^p\right\} |r_k(|c_k|^p)| \ge D. \tag{1}$$

If $n_k(r)$ denotes the number of elements in the sequence $\{c_n: n \neq k\}$ within the disk of radius r and n(r) denotes the number of elements in the sequence $\{c_n\}$, then clearly $n_k(r) \leq n(r)$. Setting |z| = r and applying to

 $P_k(z)$ the same technique as in the proof of Boas [3, pp. 29–30, Lemma 2.10.13], we see that

$$\begin{split} \log |P_k(z)| & \leq K r^{p-1} \int_0^r t^{-p} n_k(t) \, dt + K r^p \int_r^\infty t^{-p-1} n_k(t) \, dt \\ & \leq K r^{p-1} \int_0^r t^{-p} n(t) \, dt + K r^p \int_r^\infty t^{-p-1} n(t) \, dt. \end{split}$$

Then $\log |P_k(z)| = o(r^p)$ and similarly $\log |P_k(-z)| = o(r^p)$ uniformly for k. Thus

$$\log |P_k(z)| + \log |P_k(-z)| = o(r^p)$$
 for all k .

Therefore

$$\log |P_k(z)P_k(-z)| = o(r^p)$$
 for all k .

Then

$$\log |r_k(z)| = o(r^p)$$
 for all k .

So

$$\frac{\log |r_k(z)|}{r^p} = o(1) \qquad \text{for all } k.$$

Consequently, there is a function u(r) such that $\lim u(r) = 0$ as $r \to \infty$, and

$$|r_k(z)| \le \exp\{u(r)r^p\} \tag{2}$$

for all k and all complex numbers z.

Set

$$q_k(\mu, z) = \exp\left\{-\frac{\mu}{2}(z^2 - c_k^2)\right\} \frac{r_k(z^p)}{r_k(|c_k|^p)}.$$

Clearly $q_k(\mu, c_n) = \delta_{kn}$ (the case p is odd is treated using the definition $r_k(z) = P_k(z)P_k(-z)$).

Now

$$\begin{split} &\int_{\mathbf{R}} |q_{k}(\ \mu, x + iy)|^{2} \ dx \\ &= \int_{\mathbf{R}} \left| \exp\left(-\frac{\mu}{2} \left((x + iy)^{2} - c_{k}^{2}\right)\right) \right|^{2} \frac{\left|r_{k} \left((x + iy)^{p}\right)\right|^{2}}{\left|r_{k} \left(|c_{k}|^{p}\right)\right|^{2}} \ dx \\ &= \int_{\mathbf{R}} \left| \exp\left\{-\frac{\mu}{2} \left(x^{2} - y^{2} - c_{k}^{2} + 2ixy\right)\right\} \right|^{2} \frac{\left|r_{k} \left((x + iy)^{p}\right)\right|^{2}}{\left|r_{k} \left(|c_{k}|^{p}\right)\right|^{2}} \ dx \\ &= \int_{\mathbf{R}} \exp\left\{-\mu \left(x^{2} - y^{2} - c_{k}^{2}\right)\right\} \frac{\left|r_{k} \left((x + iy)^{p}\right)\right|^{2}}{\left|r_{k} \left(|c_{k}|^{p}\right)\right|^{2}} \ dx \\ &= \int_{\mathbf{R}} \exp\left\{\mu \left(y^{2} + c_{k}^{2}\right)\right\} \exp\left\{-\mu x^{2}\right\} \frac{\left|r_{k} \left((x + iy)^{p}\right)\right|^{2}}{\left|r_{k} \left(|c_{k}|^{p}\right)\right|^{2}} \ dx. \end{split}$$

Now using (1) and (2) an easy calculation shows that

$$\int_{\mathbf{R}} |q_k(\mu, x + iy)|^2 dx \le d_1^2 \exp\{\mu(y^2 + |c_k|^p + c_k^2)\},\,$$

where d_1 is independent of k. Similarly,

$$\int_{\mathbf{R}} |(x+iy)q_k(\mu, x+iy)|^2 dx$$

$$\leq d_2^2 \exp\{\mu(y^2 + |c_k|^p + c_k^2)\},$$

where d_2 is independent of k.

Now, by Boas [3, p. 29, Lemma 2.10.13], $P_k(z)$ and consequently $P_k(-z)$ is of growth (p, 0). Thus $r_k(z)$ is of growth (p, 0). It is therefore easy to see that

$$q_k(\mu, z) = O(\exp\{-\alpha|x|^{p-1}\})$$

as $|x| \to \infty$ on any strip of the form $|y| < \delta$.

By Titchmarch [4, p. 44, Theorem 26] applied to $q_k(\mu,t)$, it is easy to see that there is an entire function $h_k(\mu,t)$ such that $h_k(\mu,t)$ is in $L_2(\mathbf{R})$ and $q_k(\mu,z)$ is the Fourier transform of $h_k(\mu,t)$.

Moreover, $h_k(\mu, t)$ is continuous and for real values t

$$\left|h_k(\mu,t)\right| \leq d \exp\left\{-\frac{t^2}{2\mu} + \mu\left(\frac{c_k^2 + \left|c_k\right|^p}{2}\right)\right\},\,$$

where d is independent of k.

Let $\mu < 1/2b$ and let $m_k(\mu, t) = h_k(\mu, t)/F(t)$. Since

$$h(t) = \frac{\exp(-bt^2)}{|F(t)|},$$

it follows that

$$\begin{split} \left| m_k(\mu, t) \right| &= \frac{\left| h_k(\mu, t) \right|}{\left| F(t) \right|} = \frac{\left| h_k(\mu, t) \right| h(t)}{\exp(-bt^2)} \\ &\leq d \exp \left\{ -\left(\frac{1}{2\mu} - b\right) t^2 + \mu \left(\frac{c_k^2 + |c_k|^p}{2}\right) \right\} h(t), \end{split}$$

where d is independent of k. Finally let $l_k(t)$ be the inverse transform of $m_k(t)$.

Proof of Theorem 2. By Theorem 1, we have S(g,t)=g(t) a.e. on **R**. But from part (c) of the Lemma and the continuity of $f(c_n-t)$, it follows that S(g,t) is continuous on **R** and therefore S(g,t)=g(t) a.e. on (A,B). Thus, $\sum b_r(g)f(c_r-t)=g(t)$ a.e. on (A,B). If $t\in (A,B)$ and $W^2=\max\{A^2,B^2\}$, then

$$|b_r(g)f(c_r - t)| \le c^2 ||g||_2 \exp\left(-\delta \left(\frac{c_r^2 + |c_r|^p}{2}\right) + \gamma t^2\right)$$

$$\le c^2 ||g||_2 \exp\left(-\delta \left(\frac{c_r^2 + |c_r|^p}{2}\right) + \gamma W^2\right).$$

Consequently,

$$\begin{split} d_n & \leq \left| g(t) - \sum_0^n b_r(g) f(c_r - t) \right| \leq \sum_{n+1}^\infty \left| b_r(g) f(c_r - t) \right| \\ & \leq c^2 \|g\|_2 \exp(\gamma W^2) \sum_{n+1}^\infty \exp\left(-\delta \left(\frac{c_r^2 + |c_r|^p}{2}\right)\right) \\ & = c^2 \exp(\gamma W^2) \exp\left(-\frac{\delta c_0^2}{2}\right) \exp\left(\frac{-\delta |c_0|^p}{2}\right) \|g\|_2 \sum_{n+1}^\infty \exp\left\{-\frac{\delta}{2} (c_r^2 - c_0^2)\right\} \\ & \times \exp\left\{-\frac{\delta}{2} (|c_r|^p - |c_0|^p)\right\} \\ & \leq c^2 \exp(\gamma W^2) \exp\left\{-\frac{\delta}{2} (c_0^2 + |c_0|^p)\right\} \|g\|_2 \\ & \times \sum_{n+1}^\infty \exp\left\{-\frac{\delta}{2} \rho r\right\} \exp\left\{-\frac{\delta}{2} \rho r\right\} \\ & = c^2 \exp(\gamma W^2) \exp\left\{-\frac{\delta}{2} (c_0^2 + |c_0|^p)\right\} \|g\|_2 \sum_{n+1}^\infty \exp\{-\delta \rho r\} \\ & = c^2 \exp(\gamma W^2) \exp\left\{-\frac{\delta}{2} (c_0^2 + |c_0|^p)\right\} \|g\|_2 \frac{\exp\{-\delta \rho n\}}{\exp(\delta \rho) - 1}. \end{split}$$

Let

$$D = \frac{c^2 \exp(\gamma W^2) \exp\{-(\delta/2)(c_0^2 + |c_0|^p)\}}{\exp(\delta \rho) - 1}.$$

Note that D is a positive number (independent of n and g) and that

$$d_n \leq D||g||_2 \exp\{-\delta \rho n\}.$$

Remark. The above results generalize Zalik's results as one can see by taking p=2.

ACKNOWLEDGMENT

This is a concise summary of a chapter in my Ph.D. dissertation. I am very grateful to Professor Richard A. Zalik, my Advisor, for his assistance and thoughtfulness.

REFERENCES

- R. A. Zalik, Approximation by nonfundamental sequence of translates, *Proc. Amer. Math. Soc.* 78 (1980), 261–266.
- W. A. J. Luxemburg and J. Korevaar, Entire functions and Muntz type approximation, Trans. Amer. Math. Soc. 157 (1971), 23-37.
- 3. R. P. Boas, "Entire Functions," Academic Press, New York, 1954.
- 4. E. C. Titchmarch, "Introduction to the Theory of Fourier Integrals," 2nd ed., Oxford Univ. Press, London, 1948; reprint, 1967.
- B. Faxén, On approximation by translates and related problems in function theory, Ark. Mat. 19 (1981), 271–289.
- N. Wiener, "The Fourier Integral and Certain of Its Applications," Cambridge Univ. Press, Cambridge, 1933; reprint, Dover, New York, 1958.
- R. A. Zalik, On approximation by shifts and a theorem of Wiener, Trans. Amer. Math. Soc. 243 (1978), 299-308.